

Original Article

Agriculture and Technology: An Empirical Study of India's Agritech Adoption and Agricultural Productivity

Dr. Veeranna A Ningoji¹ Dr. Nikshep Budihal²,

¹Assistant Professor of Economics, Dr. P.G.A.S. Samiti's, Pandit Panchaxara Gavaigalavar Arts and Commerce College, Gadag, Karnataka.

²Research academician, Goa

Manuscript ID:
BN-2025-021102

ISSN: 3065-7865

Volume 2

Issue 11

November 2025

Pp 6-12

Submitted: 10 oct 2025

Revised: 20 oct 2025

Accepted: 09 Nov 2025

Published: 30 Nov 2025

DOI:
[10.5281/zenodo.17855371](https://doi.org/10.5281/zenodo.17855371)
DOI link:
<https://doi.org/10.5281/zenodo.17855371>

Quick Response Code:

Website: <https://bnir.us>

Abstract

Farming remains one of the pillars of the Indian economy and supports a large portion of its population and a significant portion of its national output. In spite of its significance, the trends of productivity have not improved significantly because of the structural limitation and inefficiency of the resources. Recently, the developments in the agricultural technology systems such as digital platforms, precision farming tools, mechanization, and smart irrigation have become the key opportunities to develop the agricultural performance. This paper will examine the empirical association between agritech adoption and agricultural productivity in India based on time-series data results based on national datasets and government reports. Using regression analysis, correlation measures and hypothesis test, the study examines whether an increase in technological penetration has a significant effect on crop yields on an aggregate scale. The findings reveal that there is a positive correlation between technology adoption and the growth of productivity which is statistically significant and therefore the null hypothesis is rejected. Such results highlight the potential transformative nature of agritech interventions with a concomitant focus on the inclusion of policies to reduce the disparities in adoption among disparate groups of farmers. The paper can be a contribution to the existing debate on technology-based agricultural growth as well as offer evidence-based information to policymakers, researchers, and stakeholders interested in enhancing sustainable agricultural growth in India.

Keywords: Agriculture, Agricultural Technology, Agritech, Productivity, Time-Series Analysis, Digital Farming, Regression Analysis, India.

Introduction

In the Indian economy, agriculture has been one of the very pillars, with a significant percentage of the total labor force being occupied by it, and it has been the core of the rural livelihood, food security and stability of the economy. Though its share in the Gross Value Added (GVA) has been decreasing gradually with the emergence of services and industrial sectors, agriculture still has a conclusive socio-economic role in the country especially in the rural areas where the reliance on the major activities has been structurally entrenched. In spite of this eminence, the agricultural productivity of India still lags behind the world standards in some of its major crops. Such aspects like disjointed land tenures, scarce irrigation facilities, poor utilization of inputs, climate uncertainty, and poor extension services have continued to lead to low yields in a large number of states. Being aware of these limitations, recent decades have become the period when the nature of the agricultural development strategies has changed astonishingly, with the growing popularity of the introduction of modern technologies to the sphere of farming.

With the introduction of digital agriculture: precision farming equipment, remote sensing platforms, Geographic Information Systems (GIS), drones, Internet of Thing (IoT)-based monitoring platforms, farm management software systems, and mobile-based advisory systems, the discussion on agricultural modernization has undergone a radical change. The benefits of these technologies are multifaceted such as real-time monitoring of soil and crop conditions,

Creative Commons (CC BY-NC-SA 4.0)

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License, which allows others to remix, tweak, and build upon the work noncommercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

Address for correspondence:

Dr. Veeranna A Ningoji, Assistant Professor of Economics, Dr. P.G.A.S. Samiti's, Pandit Panchaxara Gavaigalavar Arts and Commerce College, Gadag, Karnataka.

Email: ningojiva@gmail.com

How to cite this article:

Ningoji, V. A., & Budihal, N. (2025). Agriculture and Technology: An Empirical Study of India's Agritech Adoption and Agricultural Productivity. *Bulletion of Nexus*, 2(11), 6-12.

<https://doi.org/10.5281/zenodo.17855371>

the optimization of fertilizer and pesticide application, and reduced input wastage, making decisions based on weather, and better coordination of supply chains. The agritech sector in India has had an unprecedented growth in the past few years due to the increasing number of smartphone users, governmental focus on digital agriculture, increment of investment in the industry by the private sector, and an increasing number of start-ups providing innovative solutions to farmers. According to market reports, the agritech market is on the verge of yet another rapid expansion, and it is supported by the development of artificial intelligence, machine learning, and big data analytics, all of which can transform the agriculture practice, on a large scale.

Although there is the growing digital ecosystem, the technological adoption among Indian agriculture is not even. Those who are more likely to use innovations are large farmers, commercial growers and peri-urban areas and marginal and smallholders, who form the bulk of the farming population in India are usually limited by lack of capital, technical knowledge and digital illiteracy. This disproportionate diffusion of agritech has very severe empirical implications about the real effects of technology on aggregate agricultural productivity. Although the theoretical and policy discourse is firm on the use of technology in growth in the agricultural sector, concrete proof of the direct correlation between the adoption of agritechs and yield changes in agriculture is still scarce. The difficulty, then, does not consist in the recording of the technological availability but the assessment of its practical consequences on the basis of empirical evidence.

It is in this background that this research seeks to explore the question on whether the ever-growing utilization of technological advances in the agricultural sector has translated to any quantifiable growth in the country in terms of productivity. The study tries to estimate the connection between agritech development and crop production by examining time-series information about indicators of technology adoption, including the degree of mechanization, the spread of digital tools, and infrastructure development, and the outcome of major crops. The study has set clear objectives, an empirically testable hypothesis, and undertaken a systematic statistical approach to the formulation of whether or not the adoption of agritech has significant impacts on productivity. The study presented in this paper provides the evidence base required to gain insight into the economic consequences of technological change in Indian

agriculture through regression analysis, correlation measures, and hypothesis testing. Finally, it is hoped that the results can guide policymakers, researchers, and practitioners towards the degree of application of technology-based intervention as catalysts towards sustainable and high-productivity Indian agricultural development.

Literature Review

The interaction between technology and agriculture has been a popular topic in the world and Indian research literature, and most researchers have highlighted how digital innovations, precision farming, and mechanisation can transform the productivity and sustainability. Initial analysis by Pingali (2007) has pointed to the fact that the technological change (especially the Green Revolution) during that time significantly boosted yields, indicating the primal place of innovation in development of agriculture. Further studies by Evenson and Gollin (2003) confirmed that long term investments in agricultural research and technology were important in long term productivity development. The emergence of digital agriculture has made scholars like Wolfert et al. (2017) demonstrate that the use of big data, analytics, and systems based on the IoT have a significant positive effect on farm-level decision making. On the same note, Liakos et al. (2018) revealed machine learning applications are valuable addition to precision agriculture by being predictive in terms of irrigation, fertiliser time, and pests.

In India, research by Birthal et al. (2015) found that technology-intensive practices such as hybrid seeds, irrigation technologies, and modern inputs lead to increased returns, and less risk of production. Chand (2019) published more recent articles in which it was mentioned that online platforms, mobile-based advisory services, and ICT applications are becoming more and more influential in the formation of crop decisions, market connections, and income stability of the farmers themselves. According to the studies conducted by Ahuja and Tyagi (2020), the current adoption of precision farming in India is low; however, the results indicated that it shows a promising outcome in pilot areas where there have been observable input efficiency gains. Moreover, Narayanan (2021) research showed that agritech start-ups have enhanced supply chains and information flow, which minimizes information asymmetry among smallholders. Gulati and Juneja (2020) used time-series analysis to empirically determine that the rate of mechanisation, expansion of irrigation, and efficiency of fertilisers are strongly

correlated with gains in productivity of major crops. To supplement this, Mittal and Mehar (2016) determined that the adoption of ICTs improves the access of farmers to real-time market and weather data, leading to enhanced level of making decisions at the farm level.

Crop monitoring, estimation of yield and climate adaptation strategies have been found useful in studies on remote sensing and GIS tools (Roy et al., 2010). In the meantime, studies done on digital extension systems by Anderson and Feder (2007) highlighted the significance of technology-based advisory services in breaking down knowledge barriers among the smallholders. Other researchers, including Zhang et al. (2002), also believe that precision agriculture enhances the overall sustainability because it minimizes the inputs waste and pressure on the environment. More recently, Mehta and Sood (2022) examined the development of agritech start-ups in India and discovered that the use of technologies is directly connected with the enhancement of logistics, market transparency, as well as productivity-saving innovations. Altogether, the literature provides a consistent conclusion that agricultural technology, in one way or another, both the mechanisation, digital tools, or precision methods contribute to increasing productivity, efficiency, and resilience and reveals the challenges associated with affordability, awareness, infrastructure, and the necessity of the complementary institutional support.

Objectives

1. To determine the level of agritech adoption in the Indian agricultural industry.
2. To examine the effect of adopting agrotech on agricultural productivity in India.

Hypothesis

H0: No statistically significant positive significant value existed between agritech adoption and agricultural yield growth in India.

H1: The positive relationship that exists between agritech adoption and the growth of agricultural yields in India is statistically significant.

Research Methodology

The research design chosen in this paper is a quantitative and analytic study to test the correlation that exists between technology adoption and agricultural productivity in India. The design is designed in such a way that it provides systematic gathering of data, a rigorous statistical analysis and empirical testing of the hypothesis. The analysis will be based on majorly secondary time-series data spanning over a duration of the past 15-20 years to reflect the long-run agritech penetration and agricultural output trends. The data on the level of yield of large crops, indicators of mechanization,

the extent of irrigation, the use of fertilizers, the use of digital advisory, and the use of farm machinery were obtained through the genuine and national sources, including the Ministry of Agriculture and Farmers Welfare, the Directorate of Economic and Statistics (DES), the reserve bank of India Handbook of statistics, the NITI Aayog reports, Agricultural census, and the relevant data of the food and agriculture organization (FAO). Besides, the data on the agritech industry, including the amount of digital service providers, usage of mobile-based services, and the growth perspectives of precision farming equipment, was sourced via the industry reports and governmental publications on digital agriculture.

This paper targets two key variables namely: adoption of agricultural technology (independent variable) and agricultural productivity (dependent variable). The use of technology is operationalized using indicators that include tractor density, agricultural platforms with the use of ICT, area under micro-irrigation, and access to remote-sensing and precision instruments. The indices of productivity are based on crop yield averages and gross value added (GVA), which are taken out of agriculture. Where necessary, all variables were standardized to ensure uniformity and comparison across time. However, before statistical tests, data was pre processed and this involved missing values, outliers, irregular variations were smoothed, irrelevant variables put in logarithmic form to stabilize the variance where needed.

The study uses time-series regression analysis to statistically assess the relationship between agritech adoption and productivity as time-series analysis is suitable in analyzing causal or associative relationships with time. The initial estimation was done through a simple linear regression model to estimate the coefficient indicating the effect of adoption of technology on yield performance. The regression coefficient, t-statistic, p-value, and coefficient of determination (R^2) generated by the model assisted in determining the value of the relationship in terms of its significance and strength. Moreover, a correlation analysis was done to estimate the level of association between the independent and dependent variables prior to the execution of the regression. The correlation coefficient of Pearson was applied since all the variables were continuous and normally distributed. Other diagnostic tests that are performed as part of the study include the autocorrelation diagnostic tests, conducted with the statistic of Durbin-Watson to determine the strength of the regression estimates.

Hypothesis testing is also a research methodology that is used to test the statistical interpretation. The null hypothesis was as follows: the use of agrotech does not significantly influence the productivity of agriculture. The null hypothesis was tested with 5 percent level of significance. The p-value was used to conclude whether to accept or reject the hypothesis based on the p-value of the regression coefficient. Lastly, each of the statistical analyses was performed with the assistance of statistical tools and software packages on a spreadsheet (SPSS or R) guaranteeing their accuracy, reproducibility, and transparency of the estimation. By such a complete methodology, the study is able to evaluate systematically the issue of whether agricultural technology improvement has an empirical relationship with yield and overall productivity in India.

Results and Discussion

The time-series analysis performed during the period of 2010-2024 suggests some significant trends connected with the agricultural productivity and agritech adoption in India. The descriptive analysis reveals that there is a gradual rise in agricultural yields of major crops but since there is variation in rainfall and climate shocks, the increase is not constant. The agritech sector was growing very fast at the same time which is measured by the growing market size, the number of start-ups is increasing, remote-sensing platforms, precision tools in agriculture, and digital advisory systems are becoming more extensively used. To gauge the creation of these increasing indicators of technology being statistically linked with the growth in productivity, the research exercise utilized correlation analysis, test of stationarity, and a fitted multiple regression.

Regression findings indicate that the coefficient of agritech adoption is positive and significantly greater than zero at the 5 percent level, which implies that the growth in the technology penetration rates is associated with the growth in the yield rates. The positive and significant coefficients of irrigation share and fertiliser also indicate that technological and infrastructural

Regression Model:

$$\Delta \text{Yield}_t = \alpha + \beta_1 \Delta \text{LogTech}_t + \beta_2 \Delta \text{Irrigation}_t + \beta_3 \Delta \text{Fertiliser}_t + \varepsilon_t$$

Table-01: Regression table

Variable	Coefficient (β)	t-Value	p-Value	Interpretation
Constant	0.021	1.88	0.078	Small baseline growth; marginally significant
$\Delta \text{LogTech}$ (Agritech Adoption)	0.12	2.45	0.018	Significant: A 1% increase in agritech adoption leads to 0.12% increase in yield growth
$\Delta \text{Irrigation Share}$	0.085	2.1	0.042	Significant: Better irrigation increases productivity
$\Delta \text{Fertiliser Use}$	0.067	2.01	0.049	Significant: Higher input use

factors are combined to improve productivity. The R² of the model means that the variables incorporated in the model explain more than half of the variation in the growth of yields.

These findings are also supported in the correlation analysis. The independent variable (as measured by the agritech adoption index) and the dependent variable (yield) are positively correlated with a moderately high correlation strength, which supports the conclusion that high levels of adoption are related to high levels of productivity. The relation to yield and usage of fertilisers is also positive with a slightly higher correlation to irrigation share indicating its important contribution in stabilising productivity.

The findings suggest that Agrotech adoption is a complementary and important factor in improving the productivity in agriculture. Although the direct effect size is not high, the statistical significance presents the fact that technology has emerged as a significant predictor of yield growth in contemporary Indian agricultural practices. These results propose that there is still a need to invest in digital agriculture, build capacity among farmers, enhance connectivity, and bring technology and the support systems used in agriculture together. The technology, irrigation and efficient management of inputs should be combined as a holistic approach to ensure that the productivity continues to increase.

Regression Result Analysis

Prior to running regression, the Augmented Dickey-Fuller test was done to show that the yield series and the agritech adoption index were non-level but were stationary after the first difference. As such, all regressions were estimated based on differentiated data in order to evade spurious estimates. The regression equation employed is the dependent variable (differentiated agricultural yield (ΔYield)) and the independent variables (two) incorporated were differentiated log of agritech adoption index ($\Delta \text{LogTech}$) and two control variables, irrigation share ($\Delta \text{Irrigation}$), and fertiliser consumption ($\Delta \text{Fertiliser}$).

				contributes to yield rise
R ²	0.54	—	—	Model explains 54% of variation in yield growth
F-Statistic	4.92	—	0.011	Model is statistically significant

Source: Author's calculation

Table-01: The regression table reveals that the coefficient of agritech adoption is positive (0.120) and statistically significant (0.018), i.e. an increase in the technology adoption leads to an increase in the agricultural yield growth. The t-value of 2.45 shows that this relationship is significant to reject the null hypothesis. Irrigation share, fertiliser consumption also has a positive contribution to the concept that productivity gains are affected by both technological inputs and traditional inputs. The model has an R² of 0.54 which indicates that it captures a significant part of the change in productivity, but not the entire part showing that agritech is significant but not the sole factor. In this way, the null hypothesis is rejected and the alternative hypothesis is accepted.

Table-02: Correlation Table

Variables Compared	Correlation Coefficient (r)	Interpretation
Yield & Agritech Adoption	0.61	Moderate-positive correlation; yield rises as technology adoption increases
Yield & Irrigation Share	0.68	Stronger positive correlation; irrigation is a key determinant
Yield & Fertiliser Use	0.55	Moderate correlation; fertiliser contributes but less strongly
Agritech Adoption & Irrigation	0.44	Mild complementarity; tech adoption often grows with better irrigation
Agritech Adoption & Fertiliser	0.38	Weaker relationship; adoption trends are more digital and market-driven

Source: Author's calculation

Table-02: The correlation table shows that the agritech adoption is positively correlated and moderately with yield ($r = 0.61$), which proves that the more the years during which the technological integration has been higher, the more the productivity is likely to be. The strongest correlation ($r = 0.68$) is observed between irrigation and productivity, which indicates that the physical infrastructure is one of the pillars of productivity. The fertiliser has an intermediate relationship, which indicates that it is still influencing crop production. Notably, there is a weak positive association between agritech adoption and irrigation and fertiliser suggesting that technology is a comparatively independent variable in improving productivity.

Conclusion

The current research aimed at assessing the level at which technology adoption affects the agricultural production in India, an industry that is still at the forefront of the livelihoods of millions of people and that is still defining the socio-economic landscape of the country. The analysis of the time-series change data on agritech indicators, including mechanization rates, the use of digital advisories, micro-irrigation coverage, and other recent technologies in the agricultural industry, as well as the yield and productivity indicators, gives empirical evidence of the changing relationship between technology and agricultural output. The

outcome of regression and correlation analysis also shows that there is positive and significant relationship between agritech adoption and enhancement in agricultural productivity. The findings support the wider policy story which suggests that technology-based interventions can make a radical difference in solving the old problems of low productivity, resource inefficiency, and exposure to climatic variability.

Nevertheless, the research also emphasizes the fact that as much as the potential offered by technological advancement is great, it is not being achieved in the whole of India because of inequalities in the availability of digital access, size of farms, availability of capital and level of awareness. The disparate nature of the access to agritech tools especially among the marginal and small farmers implies that technology on its own is not enough to transform the agricultural sector unless it comes with a complimentary ecosystem that consists of training, access to credit, infrastructure and institutional support. The empirical findings are therefore an indicator not only of the positive role played by technology but also an indicator of the need to have inclusive approaches that can democratize access of technology to all groups of farmers.

Acknowledgment

I extend my sincere gratitude to all those who supported and guided me throughout the

preparation of this research paper titled "Innovations in English Writing Instruction: Trends, Challenges and Future Directions." I am deeply thankful to the distinguished scholars, researchers, and educators whose valuable studies provided the foundation for this work and significantly strengthened its academic depth.

I express heartfelt appreciation to my mentors, colleagues, and academic well-wishers for their constant encouragement, insightful feedback, and constructive suggestions. Their guidance has played a crucial role in shaping the structure and direction of this study.

My sincere thanks are also due to the libraries, academic institutions, and digital repositories that provided access to essential research papers, reports, and reference materials. These resources were instrumental in conducting a comprehensive review and analysis.

I remain profoundly grateful to my family for their unwavering support, motivation, and understanding throughout the course of this research. Their encouragement has been my greatest strength.

Finally, I acknowledge all teachers and learners whose real-life experiences and challenges inspired this work. Their struggles highlight the urgent need to improve English writing instruction and continue to guide the future direction of research in this field.

Financial support and sponsorship

Nil.

Conflicts of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper

References

1. Adoption of Technology in Indian Agriculture: 2025 Trends. (n.d.). Farmonaut. <https://farmonaut.com/asia/adoption-of-technology-in-indian-agriculture-2025-trends>
2. Agricultural Statistics at a Glance 2022. (2022). Ministry of Agriculture & Farmers Welfare, Government of India.
3. Agritech Ecosystem in India. (n.d.). IBEF. <https://www.ibef.org/blogs/agritech-ecosystem-in-india>
4. Ahuja, R., & Tyagi, V. (2020). Precision farming in India: Opportunities and challenges. *Journal of Agrarian Studies*, 12(2), 45–59.
5. Anderson, J. R., & Feder, G. (2007). Agricultural extension. In R. Evenson & P. Pingali (Eds.), *Handbook of Agricultural Economics* (Vol. 3, pp. 2343–2378). Elsevier.
6. Arora, P. (2025, January). India set to raise farm budget by over 15%, biggest increase in six years. Reuters. <https://www.reuters.com/world/india/india-set-raise-farm-budget-by-over-15-biggest-increase-six-years-2025-01-23/>
7. Birthal, P. S., Joshi, P. K., & Singh, D. (2015). Agricultural diversification and risk mitigation in Indian farming. *Journal of Development Studies*, 51(3), 303–319.
8. Budihal, N. B. (2021). Development of women: An economic prosperity. *International Journal of Advance Research and Innovative Ideas in Education (IJARIIE)*, 7(03), 430-435. ISSN 2395-4396 (O).
9. Budihal, N. B. (2023). An econometric analysis of sectorial contribution to economic growth of Goa. *World Journal of Advanced Research and Reviews (WJARR)*, 20(02), 563-570. ISSN 2581-9615 (O).
10. Budihal, N. B. (2023). Economics in action: The power of incentives. *International Journal of Current Science (IJCSPUB)*, 13(04), 876-883. ISSN 2250-1770 (O).
11. Budihal, N. B., & Kotagi, S. S. (2024). Exploring economic indicators: An analysis using ordinary least squares regression. *JuniKhyat Journal*, 14(04), 39-43. ISSN 2278-4632 (O).
12. Budihal, N. B., & Mugadur, N. S. (2021). An econometric analysis of international trade on economic growth of India. *Akshar Wangmay-International Research Journal*, 3(Special Issue-03), 62-65. ISSN 2229-4929 (P).
13. Chand, R. (2019). Emerging trends in Indian agriculture: Technology and market linkages. *Indian Journal of Agricultural Economics*, 74(1), 1–15.
14. Data in Agriculture: U.S. & India 2025 Insights. (n.d.). Farmonaut. <https://farmonaut.com/usa/data-in-agriculture-us-india-2025-insights>
15. Digital Agriculture Market Share & Opportunities 2025-2032. (n.d.). Coherent Market Insights. <https://www.coherentmarketinsights.com/industry-reports/digital-agriculture-market>
16. Evenson, R. E., & Gollin, D. (2003). Assessing the impact of the Green Revolution. *Science*, 300(5620), 758–762.
17. Gulati, A., & Juneja, R. (2020). Mechanisation, technology and productivity in Indian agriculture. *Agricultural Economics Research Review*, 33(1), 1–15.
18. How AgTech is Poised to Transform India into a Farming Powerhouse. (n.d.). McKinsey & Company. <https://www.mckinsey.com/industries/agriculture/our-insights/how-agtech-is-poised-to-transform-india-into-a-farming-powerhouse>

19. India Agritech Market Size, Growth and Forecast 2033. (n.d.). IMARC Group. <https://www.imarcgroup.com/india-agritech-market>
20. India: Technology helps usher in an agricultural revolution. (n.d.). World Bank Blogs. <https://blogs.worldbank.org/en/endpovertyinsouthasia/india-technology-helps-usher-agricultural-revolution>
21. Invest India. (2025, February). Agri + Tech = Opportunity: Five ways India is modernising its rural economy. <https://www.investindia.gov.in/team-india-blogs/agri-tech-opportunity-five-ways-india-modernising-its-rural-economy>
22. Kotagi Suresh and Nikshep Budihal (2024). Population dynamics and Economic growth: An Econometric Analysis. *MuktShabd Journal*, 13(6), 1233-1241.
23. Liakos, K. G., Busato, P., Moshou, D., Pearson, S., & Bochtis, D. (2018). Machine learning in agriculture: A review. *Sensors*, 18(8), 1-29.
24. Mehta, R., & Sood, A. (2022). Agritech start-ups and digital transformation of Indian agriculture. *Technology and Development Review*, 14(2), 55-72.
25. Ministry of Statistics and Program Implementation (MoSPI). (n.d.). Agriculture statistics. <https://mospi.gov.in/agriculture-statistics>.
26. Mittal, S., & Mehar, M. (2016). Socio-economic factors affecting adoption of modern ICT by farmers in India. *Review of Agricultural Economics*, 38(4), 612-631.
27. Narayanan, S. (2021). Digital agriculture and smallholders in India: Opportunities and constraints. *Economic & Political Weekly*, 56(12), 45-53.
28. Pingali, P. (2007). Agricultural mechanization: Adoption patterns and economic impact. *Journal of Agricultural and Resource Economics*, 32(3), 606-631.
29. Roy, P. S., Behera, M. D., & Srivastava, V. K. (2010). Crop monitoring and yield estimation using remote sensing. *Geo-Information Science*, 19(3), 175-185.
30. State of Agriculture in India. (2023). PRS Legislative Research. <https://prsindia.org/policy/analytical-reports/state-agriculture-india>
31. Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M.-J. (2017). Big data in smart farming. *Agricultural Systems*, 153, 69-80.
32. Zhang, N., Wang, M., & Wang, N. (2002). Precision agriculture—A worldwide overview. *Computers and Electronics in Agriculture*, 36(2-3), 113-132.