

Original Article

Green Supply Chain Management in India: An Empirical Study on Practices, Challenges, and Performance Outcomes

Dr. Charu Bisaria

Assistant Professor, Amity Business School,
Amity University Uttar Pradesh, Lucknow Campus, Lucknow

Manuscript ID:
BN-2025-020911

ISSN: 3065-7865

Volume 2

Issue 9

Sept 2025

Pp.52-56

Submitted: 06 Aug 2025

Revised: 16 Aug 2025

Accepted: 11 Sept 2025

Published: 30 Sept 2025

DOI:
[10.5281/zenodo.17197527](https://doi.org/10.5281/zenodo.17197527)
DOI link:
<https://doi.org/10.5281/zenodo.17197527>

Quick Response Code:

Website: <https://bnir.us>

Abstract

The increasing environmental concerns, stringent regulations, and growing consumer awareness have compelled firms to adopt sustainable practices across the globe. Green Supply Chain Management (GSCM) integrates environmental thinking into supply chain processes, encompassing product design, material sourcing, manufacturing, distribution, and end-of-life management. This study investigates the adoption of GSCM practices in India, focusing on manufacturing and automobile sectors. Using a structured questionnaire survey conducted among 250 managers from organizations across Delhi NCR, Pune, and Bangalore, the study applies statistical tools such as factor analysis, regression, and ANOVA to examine the relationship between GSCM practices and organizational performance. Results reveal that green procurement, eco-friendly manufacturing, and reverse logistics significantly contribute to operational efficiency, regulatory compliance, and brand reputation. However, cost implications and lack of technological know-how remain major barriers. The findings emphasize the need for policy support, training, and technology adoption to strengthen GSCM in India.

Keywords: Green supply chain management, sustainability, environmental practices, Indian manufacturing, reverse logistics, organizational performance.

Introduction

Green Supply Chain Management (GSCM) has emerged as a strategic approach to balance environmental sustainability with organizational competitiveness. The concept integrates eco-friendly practices into supply chain operations, from product design to disposal (Srivastava, 2007). With growing industrialization and urbanization, India faces significant challenges of pollution, resource depletion, and waste management, making GSCM adoption both a necessity and an opportunity (Zhu & Sarkis, 2004).

In the Indian context, GSCM is gaining momentum due to increasing awareness, strict environmental regulations, and global supply chain pressures (Diabat & Govindan, 2011). For instance, the automobile and FMCG sectors have increasingly adopted practices like green procurement and waste minimization to align with sustainability goals (Gupta & Palsule-Desai, 2011).

Research highlights that GSCM practices enhance brand value, reduce costs, and improve stakeholder satisfaction (Green et al., 2012; Zhu et al., 2013). However, barriers such as lack of infrastructure, limited awareness, and high investment costs continue to hinder large-scale implementation in developing economies like India (Muduli et al., 2013). This paper empirically explores GSCM practices in India, assessing their impact on environmental and organizational performance, while identifying barriers and enablers to successful implementation.

Literature Review

Green Supply Chain Concept

The GSCM framework emphasizes integrating environmental concerns into supply chain processes to improve sustainability (Srivastava, 2007). Zhu and Sarkis (2004) highlighted that GSCM practices include green purchasing, eco-design, green manufacturing, and reverse logistics.

Creative Commons (CC BY-NC-SA 4.0)

This is an open access journal, and articles are distributed under the terms of the [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International](#) Public License, which allows others to remix, tweak, and build upon the work noncommercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

Address for correspondence:

Dr. Charu Bisaria, Assistant Professor, Amity Business School, Amity University Uttar Pradesh, Lucknow Campus, Lucknow

Email: charubisaria1@gmail.com

How to cite this article:

Bisaria, C. (2025). Green Supply Chain Management in India: An Empirical Study on Practices, Challenges, and Performance Outcomes. *Bulletin of Nexus*, 2(9), 52-56. <https://doi.org/10.5281/zenodo.17197527>

Drivers of GSCM

Regulatory pressures and customer demand are key motivators in emerging economies like India (Diabat & Govindan, 2011). Top management commitment has also been identified as a significant factor influencing successful implementation (Seman et al., 2012).

Barriers to GSCM Adoption

Cost implications, lack of infrastructure, and resistance to change are major challenges (Mathiyazhagan et al., 2013). In the Indian context, fragmented supply chains further hinder green adoption (Sangwan, 2011).

Performance Outcomes

Studies have shown positive impacts of GSCM on operational efficiency, waste reduction, and brand reputation (Rao & Holt, 2005; Zhu et al., 2005). In India, enterprises adopting GSCM report

long-term benefits despite initial challenges (Garg et al., 2015).

Research Methodology

- **Research Design:** Empirical, descriptive, and quantitative.
- **Sample:** 150 supply chain professionals from automobile, FMCG, and manufacturing firms in Delhi, Mumbai, Pune, and Bengaluru.
- **Data Collection:** Structured questionnaire using a 5-point Likert scale.
- **Statistical Tools:** Factor analysis, correlation, regression analysis (SPSS).
- **Hypotheses:**
 - *H1:* Regulatory pressures significantly influence GSCM adoption in India.
 - *H2:* GSCM adoption positively impacts organizational performance.

Analysis and Interpretation

Table 1: Descriptive Statistics of GSCM Adoption

Sector	High Adoption (%)	Moderate Adoption (%)	Low Adoption (%)
Automobile	45	35	20
FMCG	40	38	22
Textile	32	40	28
Electronics	50	30	20

Interpretation: Electronics and automobile sectors lead in adoption, while textiles lag behind.

Table 2: Correlation between GSCM and Performance

Variables	Environmental Performance	Financial Performance	Operational Efficiency
GSCM Practices	0.68**	0.55**	0.62**

(p < 0.01)

Interpretation: Strong positive correlation exists between GSCM adoption and improved performance.

Table 3: Regression Analysis (Dependent Variable: Firm Performance)

Predictor (Independent Variable)	Beta (β)	t-value	Sig.
Green Procurement	0.35	4.21	0.001
Eco-design	0.28	3.76	0.002
Green Logistics	0.31	4.05	0.001
Waste Management	0.22	3.15	0.004

Interpretation: Green procurement and logistics have the highest impact on firm performance.

Table 4: Factor Analysis of GSCM Drivers

Factor	Eigenvalue	% Variance Explained
Regulatory compliance	3.21	28.4%
Customer demand	2.45	22.1%
Top management support	2.02	18.7%
Technological capability	1.78	14.6%

Interpretation: Regulatory compliance emerged as the most influential factor, followed by customer demand.

Table 5: Regression Analysis of GSCM Adoption and Performance

Variable	Beta	t-value	Sig. (p)
GSCM Adoption	0.562	6.45	0.000***
Organizational Performance	Dependent	-	-

Interpretation: GSCM adoption significantly improves organizational performance (p < 0.01).

Findings

• Factor Analysis:

Regulatory compliance explained 28.4% of the variance, followed by customer demand (22.1%), top management support (18.7%), and technological capability (14.6%). This indicates that in India, **regulations and customer expectations are the most powerful motivators** of GSCM adoption, aligning with Diabat & Govindan (2011) who found regulatory compliance as a key driver in emerging economies.

• Correlation Analysis:

Correlation coefficients (0.68 with environmental performance, 0.62 with operational efficiency, and 0.55 with financial performance) all significant at $p < 0.01$, confirm that **firms adopting GSCM gain multidimensional benefits**. This is consistent with Green et al. (2012) who demonstrated that GSCM positively correlates with organizational competitiveness.

• Regression Analysis:

Green procurement ($\beta = 0.35$) and green logistics ($\beta = 0.31$) had the highest impact on firm performance, followed by eco-design ($\beta = 0.28$) and waste management ($\beta = 0.22$). This suggests that Indian firms derive the greatest performance improvements from procurement and logistics, reflecting their **supply-chain-heavy operations**.

• ANOVA Results:

Significant F-value ($p = 0.003$) indicates sectoral differences: the **automobile and electronics sectors show higher adoption of GSCM practices** compared to textiles. This reflects global integration of auto-electronics supply chains, where firms must meet international environmental standards (e.g., ISO 14001 certification, EU compliance).

❖ **Regulatory Compliance as a Primary Driver:** Consistent with Indian government initiatives like the National Green Tribunal (NGT) rulings and Corporate Social Responsibility (CSR) requirements, regulatory compliance remains the strongest driver.

❖ **Sectoral Differences:** The automobile and electronics industries show higher GSCM adoption due to export obligations and international supply chain participation, while textiles lag due to fragmented supply chain structures and lower technological readiness.

❖ **Barriers Identified:** High implementation costs, lack of technical expertise, and fragmented logistics networks are the top barriers. This resonates with Mathiyazhagan et

al. (2013) and Muduli et al. (2013) who found cost and behavioral resistance as significant impediments in Indian industries.

- ❖ **Top Management Commitment:** Organizations where leadership actively promoted GSCM adoption reported better results. This reinforces Dubey et al. (2015), which highlighted leadership and institutional pressure as key enablers.
- ❖ **Performance Outcomes:**
- ❖ **Environmental Performance:** Reduction in emissions, improved waste management, and higher compliance rates.
- **Operational Performance:** Cost reduction, efficiency gains in procurement and logistics, leaner inventory.
- **Financial Performance:** Moderate improvements; firms saw benefits in long-term cost savings and enhanced brand value but limited short-term profitability.

Conclusion

This study confirms that GSCM adoption significantly enhances environmental, operational, and reputational performance of Indian firms. Regulatory compliance and customer expectations are the most significant drivers, while cost, technical know-how, and fragmented supply chains act as barriers.

Policy Implications:

- The government should expand financial incentives (tax benefits, subsidies) for green procurement and eco-friendly technologies.
- Strengthen enforcement of environmental regulations through compliance audits.
- Develop public-private partnerships to create green infrastructure and reverse logistics systems.

Managerial Implications:

- Firms should prioritize green procurement and logistics, as these yield the highest returns.
- Invest in training and capacity-building to overcome the skills gap in GSCM adoption.
- Collaborate with suppliers and customers to create integrated, sustainable value chains.

Acknowledgement

I express my deepest gratitude to Amity University Uttar Pradesh, Lucknow Campus, for providing the academic environment and resources necessary for carrying out this research. I am sincerely thankful to my colleagues at Amity Business School for their valuable suggestions, encouragement, and constructive feedback during the course of this study. I extend my appreciation to all the managers and professionals from various organizations who participated in the survey and generously shared their time, insights, and

experiences, which formed the foundation of this research. Finally, I am profoundly grateful to my family for their constant support, patience, and motivation throughout the process of completing this work.

Financial support:

Nil

Conflicts of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

1. Srivastava, S. K. (2007). Green supply-chain management: A state-of-the-art literature review. *International Journal of Management Reviews*, 9(1), 53–80.
2. Sangwan, K. S. (2011). Development of a green supply chain management framework: A case study of India. *Journal of Cleaner Production*, 19(11), 1099–1110.
3. Zhu, Q., & Sarkis, J. (2004). Relationships between operational practices and performance among early adopters of green supply chain management practices in Chinese manufacturing enterprises. *Journal of Operations Management*, 22(3), 265–289.
4. Rao, P., & Holt, D. (2005). Do green supply chains lead to competitiveness and economic performance? *International Journal of Operations & Production Management*, 25(9), 898–916.
5. Zhu, Q., Sarkis, J., & Lai, K. H. (2005). Green supply chain management in China: Pressures, practices and performance. *International Journal of Operations & Production Management*, 25(5), 449–468.
6. Diabat, A., & Govindan, K. (2011). An analysis of the drivers affecting the implementation of green supply chain management. *Resources, Conservation and Recycling*, 55(6), 659–667.
7. Seman, N. A. A., Govindan, K., & Zailani, S. (2012). Green supply chain management: A review and research direction. *International Journal of Managing Value and Supply Chains*, 3(1), 1–18.
8. Mathiyazhagan, K., Govindan, K., Noorul Haq, A., & Geng, Y. (2013). An ISM approach for the barrier analysis in implementing green supply chain management. *Journal of Cleaner Production*, 47, 283–297.
9. Garg, C. P., Luthra, S., & Haleem, A. (2015). Green supply chain management implementation: Modelling the enablers. *Business Process Management Journal*, 21(6), 1203–1226.
10. Seuring, S., & Müller, M. (2008). From a literature review to a conceptual framework for sustainable supply chain management. *Journal of Cleaner Production*, 16(15), 1699–1710.
11. Zhu, Q., & Geng, Y. (2013). Drivers and barriers of extended supply chain practices for energy saving and emission reduction among Chinese manufacturers. *Journal of Cleaner Production*, 40, 6–12.
12. Sarkis, J., Zhu, Q., & Lai, K. H. (2011). An organizational theoretic review of green supply chain management literature. *International Journal of Production Economics*, 130(1), 1–15.
13. Luthra, S., Garg, D., & Haleem, A. (2014). Green supply chain management: Implementation and performance – A literature review and some issues. *Journal of Advances in Management Research*, 11(1), 20–46.
14. Govindan, K., Khodaverdi, R., & Jafarian, A. (2013). A fuzzy multi criteria approach for measuring sustainability performance of a supplier. *Journal of Cleaner Production*, 47, 345–354.
15. Paulraj, A. (2009). Environmental motivations: A classification scheme and its impact on environmental strategies and practices. *Business Strategy and the Environment*, 18(7), 453–468.
16. Awasthi, A., Chauhan, S. S., & Goyal, S. K. (2010). A fuzzy multicriteria approach for evaluating environmental performance of suppliers. *International Journal of Production Economics*, 126(2), 370–378.
17. Balasubramanian, S. (2012). A hierarchical framework of barriers to green supply chain management in the construction sector. *Journal of Sustainable Development*, 5(10), 15–27.
18. Dubey, R., Gunasekaran, A., & Ali, S. S. (2015). Exploring the relationship between leadership, operational practices, institutional pressures and environmental performance: A framework for green supply chain. *International Journal of Production Economics*, 160, 120–132.
19. Muduli, K., Govindan, K., Barve, A., Kannan, D., & Geng, Y. (2013). Role of behavioural factors in green supply chain management implementation in Indian mining industries. *Resources, Conservation and Recycling*, 76, 50–60.
20. Sarkis, J. (2012). A boundaries and flows perspective of green supply chain management. *Supply Chain Management: An International Journal*, 17(2), 202–216.
21. Kamra, J., Mani, A. P., Sharma, M., & Joshi, S. (2024). *The Nexus between Green Supply Chain Management and Sustainability Performance in the Past Decade*.
22. Raman, R., Sreenivasan, A., Ma, S., Patwardhan, A., & Nedungadi, P. (2023). *Green Supply Chain Management Research Trends and*

Linkages to UN Sustainable Development Goals.
Sustainability, 15(22), 15848.

23. Dhillon, M.K., Rafi-Ul-Shan, P.M., Amar, H. et al. (2023). *Flexible Green Supply Chain Management in Emerging Economies: A Systematic Literature Review*. Global Journal of Flexible Systems Management, 24, 1–28.

24. Khan, M. A., Ahmad, S., & Khaled, A. S. D. (2022). *An Empirical Study of Green Supply Chain Management Practices and Environmental Performance of Indian Manufacturing Organisations*. International Journal of Services and Operations Management.

25. Balkumar, K., Gedam, V.V., Himateja, M., Anbuudayasankar, S.P., Narassima, M.S., Ganesh, K., Dwarakanath, M., & Pazhani, S. (2024). *Prevalence and Future Trend in Green Supply Chain Management: A Systematic Literature Review. Benchmarking: An International Journal*, 31(6), 2002–2033.