

Original Article

Principles and Applications of Chromatography for Biomolecular Purification and Analysis

Gite Hrishikesh K.¹, Gadhav Anuradha A², Belote M.N³

^{1,2,3}Assistant Professor, Department of Chemistry, Arts, Commerce and Science College Alkuti, Parner

Manuscript ID:
BN-2025-0208015

ISSN: 3065-7865

Volume 2

Issue 8

August 2025

Pp62-67

Submitted: 13 July 2025

Revised: 22 July 2025

Accepted: 11 Aug 2025

Published: 31 Aug 2025

DOI:
[10.5281/zenodo.17157681](https://doi.org/10.5281/zenodo.17157681)
DOI link:
<https://doi.org/10.5281/zenodo.17157681>

Quick Response Code:

Website: <https://bnir.us>

Abstract

Biomolecules such as proteins, nucleic acids, lipids, and carbohydrates are essential for life, performing diverse structural and functional roles within living organisms. Purification and analysis of these biomolecules are critical for understanding biological processes and for applications in pharmaceuticals, diagnostics, and biotechnology. Chromatography, a powerful separation technique based on differential interactions between stationary and mobile phases, enables effective isolation and characterization of biomolecules from complex mixtures. Various chromatographic methods—including column chromatography, high-performance liquid chromatography (HPLC), gas chromatography (GC), and thin-layer chromatography (TLC)—are widely employed depending on the nature of the biomolecules and the desired resolution. Recent advancements, such as affinity tags, automation, coupling with mass spectrometry, and microfluidic technologies, have significantly enhanced the specificity, sensitivity, and throughput of chromatographic separations. Despite challenges like sample complexity and scale-up limitations, innovative strategies including multi-dimensional chromatography are expanding the technique's capabilities. Chromatography continues to be fundamental in advancing biochemical research and industrial applications, with promising prospects in personalized medicine and proteomics.

Keywords: - Biomolecules, Chromatography, Protein purification, Ion-exchange chromatography, Affinity chromatography, HPLC, Gas chromatography, Thin-layer chromatography, Mass spectrometry, Metabolomics, Proteomics, Personalized medicine.

Introduction

Biomolecules are organic compounds that are essential for the structure and function of living organisms. The four major classes of biomolecules—proteins, nucleic acids, lipids, and carbohydrates—play diverse and vital roles in biological systems. Proteins, made up of amino acid chains, are involved in nearly every cellular process, serving as enzymes that catalyze reactions, structural components providing support, transporters, signaling molecules, and immune system effectors. Nucleic acids, including DNA and RNA, store and transmit genetic information crucial for inheritance, gene expression, and regulation. Lipids are hydrophobic molecules that form the structural foundation of cell membranes, serve as long-term energy storage molecules, and act as signaling compounds such as steroid hormones. Carbohydrates provide immediate energy sources like glucose, serve as storage molecules such as glycogen and starch, and contribute to structural integrity in plants through cellulose. Additionally, carbohydrates are involved in cell recognition and signaling when attached to proteins and lipids on the cell surface. Together, these biomolecules create the molecular framework of life, enabling growth, metabolism, communication, and adaptation within all living organisms. The purification and analysis of biomolecules are essential processes in both biochemical research and various industries such as pharmaceuticals and diagnostics. In research, isolating pure biomolecules like enzymes, proteins, or nucleic acids is crucial for understanding their structure, function, and mechanisms of action. This purity allows scientists to accurately study metabolic pathways, signal transduction, and gene regulation, which deepens our knowledge of cellular processes. Additionally, purified biomolecules serve as vital tools in drug discovery by enabling the identification and characterization of drug targets, as well as the development of diagnostic assays.

Creative Commons (CC BY-NC-SA 4.0)

This is an open access journal, and articles are distributed under the terms of the [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International](#) Public License, which allows others to remix, tweak, and build upon the work noncommercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

Address for correspondence:

Gite Hrishikesh K, Assistant Professor, Department of Chemistry, Arts, Commerce and Science College Alkuti, Parner

Email:- hrishikeshgite13@gmail.com

How to cite this article:

Gite, H. K., Gadhav, A., & Belote, M. N. (2025). Principles and Applications of Chromatography for Biomolecular Purification and Analysis. *Bulletin of Nexus*, 2(8), 62–67.

<https://doi.org/10.5281/zenodo.17157681>

In the pharmaceutical industry, purification is indispensable for producing therapeutic proteins, biologics, and vaccines, ensuring the safety, efficacy, and quality of these products. Rigorous analysis during production also helps detect contaminants and ensures compliance with regulatory standards. Diagnostics rely on purified biomolecules to identify disease biomarkers, develop sensitive assays, and monitor treatment responses. Beyond these fields, biotechnology and agricultural research use purified enzymes and nucleic acids for applications ranging from enzyme engineering to crop improvement. Overall, the ability to efficiently purify and analyze biomolecules using techniques such as chromatography is fundamental to advancing scientific knowledge and driving innovation across medicine, diagnostics, and biotechnology sectors. Chromatography is a widely used analytical and preparative technique employed to separate, identify, and purify components in complex mixtures. Its versatility arises from the ability to exploit differences in physical or chemical properties—such as size, charge, polarity, or affinity—between molecules to achieve separation. The technique involves two main phases: a stationary phase, which remains fixed, and a mobile phase, which moves through or over the stationary phase carrying the sample mixture. Depending on the interaction of individual components with these phases, they travel at different rates, resulting in their separation. Chromatography has become indispensable in biochemistry, pharmaceuticals, environmental science, and many other fields due to its precision, efficiency, and adaptability to a wide range of substances, from small metabolites to large biomolecules like proteins and nucleic acids.

Principles of Chromatography :- Chromatography is fundamentally based on the differential partitioning of components between two distinct phases: the stationary phase and the mobile phase. The stationary phase is typically a solid or a liquid immobilized on a solid support, which remains fixed within the chromatographic apparatus. Conversely, the mobile phase, which can be a liquid or gas, continuously flows through or over the stationary phase carrying the analyte mixture. The distribution of individual components between these two phases is governed by their relative affinities, quantified by the partition coefficient—defined as the ratio of the analyte's concentration in the stationary phase to that in the mobile phase. Components exhibiting a higher affinity for the stationary phase tend to be retained longer, resulting in slower migration, whereas those favoring the mobile phase traverse the system more rapidly. This differential migration underlies the separation process. The retention time, denoting the time elapsed from sample introduction to detection, serves as a critical parameter for both qualitative identification and quantitative analysis of analytes. Understanding these fundamental principles is essential for optimizing chromatographic separations across various biochemical applications.

2.1 Types of Chromatography Based on Phase and Principle :- Chromatographic techniques are classified according to the nature of the stationary and mobile phases, as well as the underlying separation principle. The major types commonly employed in biochemical purification and analysis include adsorption chromatography, partition chromatography, ion-exchange chromatography, size-exclusion chromatography, and affinity chromatography.

Type of Chromatography	Key Features	Stationary Phase	Mobile Phase	Typical Applications
Adsorption Chromatography	Separation based on adsorption affinity to solid surface	Solid adsorbent (silica, alumina)	Liquid solvent	Small molecule separation, preparative and analytical uses
Partition Chromatography	Separation by differential solubility between two liquid	Liquid immobilized on solid support	Immiscible liquid	Lipids, amino acids, small biomolecules (e.g., paper chromatography)

Type of Chromatography	Key Features	Stationary Phase	Mobile Phase	Typical Applications
	phases			
Ion-Exchange Chromatography	Separation by charge interactions	Charged resin (cation or anion exchangers)	Aqueous buffer	Protein, nucleic acid purification
Size-Exclusion Chromatography (Gel Filtration)	Separation by molecular size and shape	Porous beads	Aqueous buffer	Protein purification, molecular weight estimation
Affinity Chromatography	Separation by specific reversible binding to ligand	Ligand immobilized on resin	Buffer with varying conditions	Purification of specific proteins, antibodies, enzymes

1. Adsorption Chromatography :- This method separates molecules based on their differing affinities for a solid stationary phase, typically silica or alumina. Components in the mixture adsorb onto the surface of the stationary phase to varying degrees, influencing their retention. Molecules weakly adsorbed elute faster, while strongly adsorbed compounds remain longer. This technique is useful for separating small molecules and can be adapted for preparative or analytical purposes.

2. Partition Chromatography :- Partition chromatography exploits differences in solubility between two immiscible liquid phases—one immobilized as the stationary phase and the other acting as the mobile phase. Separation occurs as analytes partition between these phases based on their relative solubility. Paper chromatography and gas-liquid chromatography are classic examples, often applied in separating lipids, amino acids, and other small biomolecules.

3. Ion-Exchange Chromatography :- This technique separates charged biomolecules according to their affinity for oppositely charged functional groups attached to the stationary phase. Cation-exchange resins carry negatively charged groups that bind positively charged analytes, whereas anion-exchange resins bind negatively charged molecules. Elution is typically achieved by altering pH or ionic strength, making ion-exchange chromatography highly effective for purifying proteins, nucleic acids, and other charged biomolecules.

4. Size-Exclusion Chromatography :- Also known as gel filtration chromatography, this method separates molecules based on size and shape. The stationary phase consists of porous beads that allow smaller molecules to enter the pores and thus have a longer retention time, while larger molecules are excluded and elute earlier. This non-denaturing technique is widely used for protein purification and molecular weight estimation.

5. Affinity Chromatography :- Affinity chromatography utilizes specific and reversible

interactions between a biomolecule and a ligand immobilized on the stationary phase. This highly selective method is employed to purify proteins, antibodies, enzymes, or nucleic acids based on binding affinity. Elution is achieved by changing the buffer conditions to disrupt the interaction, enabling purification of target molecules with high specificity and yield.

Types of Chromatographic Techniques in Biomolecular Purification and Analysis

1. Column Chromatography :- Column chromatography is a widely employed technique for the separation and purification of biomolecules based on their differential interactions with the stationary phase packed within a vertical column. The sample mixture is applied at the top of the column, and the mobile phase is continuously passed through, facilitating the migration and separation of components according to their physical or chemical properties. This method offers high resolution and scalability, making it indispensable in biochemical laboratories and industrial settings.

1. Ion-Exchange Chromatography :- This type exploits the charge properties of biomolecules. The stationary phase contains charged groups—either positive (anion-exchange) or negative (cation-exchange)—which selectively bind oppositely charged analytes. By gradually changing the ionic strength or pH of the mobile phase, bound molecules can be eluted in order of their affinity. Ion-exchange chromatography is extensively used for protein purification, especially for isolating enzymes, antibodies, and nucleic acids.

2. Gel Filtration Chromatography (Size-Exclusion Chromatography) :- Gel filtration separates molecules based on size by passing them through a column packed with porous beads. Larger molecules are excluded from the pores and elute first, while smaller molecules enter the beads' pores and have longer retention times. This non-denaturing technique is valuable for purifying

proteins, estimating molecular weights, and removing salts or small impurities from biomolecular preparations.

3. Affinity Chromatography :- Affinity chromatography leverages highly specific interactions between a target molecule and a ligand immobilized on the stationary phase. Common ligands include antibodies, metal ions, or substrates that bind the biomolecule of interest. This specificity enables the purification of a target protein or nucleic acid from complex mixtures with high purity and yield. Elution is typically achieved by altering pH, ionic strength, or adding competitive ligands.

High-Performance Liquid Chromatography (HPLC) :- High-Performance Liquid Chromatography (HPLC) is an advanced chromatographic technique widely utilized for the separation, identification, and quantification of biomolecules. It offers superior resolution, speed, and sensitivity compared to traditional liquid chromatography, making it indispensable in biochemical research and pharmaceutical analysis.

1. Reverse Phase HPLC (RP-HPLC): The most commonly used mode where the stationary phase is nonpolar (e.g., C18 hydrocarbon chains) and the mobile phase is relatively polar. Molecules are separated based on hydrophobic interactions, with more hydrophobic analytes retained longer. RP-HPLC is widely used for peptides, small proteins, and metabolites.

2. Ion-Exchange HPLC: Utilizes charged stationary phases to separate analytes based on their ionic properties. Cation-exchange or anion-exchange columns selectively retain oppositely charged biomolecules, with elution achieved by gradient changes in pH or ionic strength.

3. Size-Exclusion HPLC: Also known as gel permeation chromatography, this technique separates molecules based on size using porous beads in the stationary phase. Larger molecules elute earlier, as they are excluded from the pores, while smaller molecules enter the pores and elute later.

Gas Chromatography (GC) :- Gas Chromatography (GC) is a chromatographic technique primarily used for the separation and analysis of volatile and semi-volatile compounds. In this method, the mobile phase is an inert carrier gas such as helium or nitrogen, while the stationary phase is typically a liquid or polymer coated onto the surface of an inert solid support inside a capillary or packed column. The sample is vaporized before injection, making GC especially suited for analytes that are volatile or can be chemically derivatized to volatile forms.

GC plays a critical role in the analysis of volatile biomolecules and derivatized compounds, particularly in the fields of lipidomics and metabolomics. Lipids such as fatty acids, sterols, and volatile organic compounds are often analyzed by GC after suitable derivatization to enhance volatility and stability. This allows detailed profiling of lipid composition, fatty acid saturation, and oxidation status, which are important in understanding cellular metabolism, nutrition, and disease states. Additionally, GC is widely used in metabolomics to analyze small volatile metabolites and biochemical intermediates, providing insights into metabolic pathways and physiological conditions.

Thin Layer Chromatography (TLC) :- Thin Layer Chromatography (TLC) is a simple, rapid, and cost-effective chromatographic technique primarily used for qualitative analysis of biomolecules. In TLC, a small amount of sample is applied onto a stationary phase coated on a flat plate, typically silica gel or alumina, and the mobile phase solvent moves up the plate by capillary action, separating components based on their differential affinities. This technique is widely employed in the preliminary analysis and identification of lipids, amino acids, and sugars. Its ease of use and minimal equipment requirements make TLC an invaluable tool for quick screening of complex biological mixtures, monitoring reaction progress, and assessing purity before more detailed quantitative analyses.

Applications of Chromatography in Biochemistry:- Chromatographic techniques play a pivotal role in the purification and analysis of biomolecules for various biochemical and industrial applications. The purification of enzymes and proteins is essential for structural and functional studies, enabling detailed investigation of their catalytic mechanisms, interactions, and conformational dynamics. Similarly, the isolation and characterization of nucleic acids such as DNA and RNA are fundamental for genetic, molecular biology, and diagnostic research. Chromatography is also crucial for analyzing post-translational modifications—including glycosylation and phosphorylation—which regulate protein activity and signaling pathways. In metabolomics, chromatographic methods facilitate comprehensive metabolite profiling, providing insights into cellular metabolism, physiological states, and disease processes. Furthermore, in the pharmaceutical industry, chromatography ensures stringent quality control and drug purity analysis, safeguarding the safety and efficacy of therapeutic products. Collectively, these applications underscore the indispensable role of chromatography in advancing both fundamental research and applied biosciences.

Application Area	Role of Chromatography	Common Techniques Used
Protein Purification	Separates proteins based on size, charge, affinity to purify target proteins from mixtures	Affinity chromatography, Ion exchange, Size exclusion chromatography (SEC)
Nucleic Acid Isolation	Isolates DNA/RNA by removing contaminants, purifying nucleic acids for analysis	Ion exchange chromatography, Affinity chromatography (silica-based)
Metabolite Analysis	Separates and identifies small molecules and metabolites in complex samples	Gas chromatography (GC), Liquid chromatography (LC), LC-MS
Pharmaceutical Quality Control (QC)	Detects and quantifies active ingredients, impurities, and degradation products to ensure drug safety	High-performance liquid chromatography (HPLC), Ultra-performance LC (UPLC)
Diagnostics	Detects biomarkers or pathogens by separating target molecules from clinical samples	Immunoaffinity chromatography, Chromatographic immunoassays
Biotechnology	Purifies biologics like monoclonal antibodies, vaccines, enzymes during downstream processing	Affinity chromatography, Ion exchange, Hydrophobic interaction chromatography

Recent Advances and Trends :- Chromatographic techniques have witnessed significant advancements that have enhanced their efficiency, specificity, and applicability in biomolecular research. One notable development is the design and implementation of affinity tags and specialized resins, which facilitate targeted purification of proteins and nucleic acids with high selectivity and yield. These affinity systems have streamlined purification protocols, particularly for recombinant proteins, enabling rapid isolation from complex mixtures. Additionally, the integration of automation and high-throughput chromatography platforms has revolutionized sample processing, allowing simultaneous handling of numerous samples with increased reproducibility and reduced manual labor. Another major trend is the coupling of liquid chromatography with mass spectrometry (LC-MS/MS), which has become indispensable for comprehensive biomolecular analysis, including proteomics and metabolomics, providing unparalleled sensitivity and structural information. Furthermore, miniaturization through microfluidic chromatography devices offers advantages such as reduced sample and reagent consumption, faster analysis times, and potential for point-of-care diagnostics. Collectively, these innovations are expanding the scope and precision of chromatographic methods, driving new frontiers in biochemical research and industrial applications.

Challenges and Future Perspectives :- Despite significant advancements, chromatographic techniques continue to face several challenges that impact their efficacy in biomolecular purification and analysis. One major issue is the increasing

complexity of biological samples, which contain vast arrays of molecules with overlapping physical and chemical properties, making complete resolution difficult. Limitations in chromatographic resolution can hinder the separation of closely related isoforms, post-translationally modified proteins, or low-abundance metabolites. Additionally, scaling up chromatographic processes from analytical to preparative or industrial levels often presents technical and economic challenges, including maintaining reproducibility, efficiency, and cost-effectiveness. To address these challenges, emerging approaches such as multi-dimensional chromatography have gained prominence. By combining two or more chromatographic methods with different separation principles, multi-dimensional chromatography enhances resolution and peak capacity, enabling more comprehensive analysis of complex mixtures. Advances in materials science and column technology are also improving selectivity and throughput. Looking forward, chromatography holds substantial potential in personalized medicine and proteomics. Tailoring chromatographic methods to analyze individual-specific biomolecular profiles can facilitate early disease diagnosis, treatment monitoring, and therapeutic development. Integration with high-resolution mass spectrometry and bioinformatics tools promises to deepen insights into protein dynamics, interactions, and modifications at unprecedented detail, ultimately driving innovations in precision healthcare and biotechnology.

Challenge	Description	Emerging Solutions	Description
Sample Complexity	Overlapping molecules and isoforms complicate separation	Multi-dimensional Chromatography	Combining methods to increase resolution and peak

Challenge	Description	Emerging Solutions	Description
			capacity
Resolution Limitations	Difficulty separating closely related molecules	Advanced Column Materials	New materials enhance selectivity and efficiency
Scale-Up Issues	Maintaining reproducibility and cost-effectiveness at industrial scale	Automation & High-Throughput Systems	Improves consistency and reduces manual labor
Low-Abundance Biomolecules	Detecting and purifying trace components	Coupling with Mass Spectrometry (LC-MS/MS)	Sensitive detection and identification of low-level analytes

Conclusion:

Chromatography remains an indispensable technique in the purification and analysis of biomolecules, underpinning critical advancements across biochemistry, biotechnology, pharmaceuticals, and diagnostics. Its ability to separate complex mixtures based on diverse physical and chemical properties allows researchers to isolate, characterize, and quantify proteins, nucleic acids, lipids, carbohydrates, and metabolites with high specificity and sensitivity. The wide variety of chromatographic methods—including column chromatography, HPLC, gas chromatography, and thin-layer chromatography—provide versatile tools suited for different biomolecular types and analytical goals. Recent technological advancements such as affinity tags, automation, coupling with mass spectrometry, and microfluidic devices have significantly enhanced the precision, throughput, and applicability of chromatographic techniques. Despite persistent challenges such as sample complexity and scale-up issues, innovative approaches like multidimensional chromatography and advanced column materials continue to push the boundaries of what can be achieved. Looking ahead, chromatography is poised to play a pivotal role in personalized medicine, proteomics, and precision biotechnology, enabling deeper insights into biomolecular dynamics and fostering the development of novel therapeutics and diagnostics. Thus, chromatography not only remains fundamental to current biochemical research and industrial applications but also promises to drive future innovations in life sciences.

Acknowledgments

The authors wish to express their gratitude for the support received during the development of this paper. We extend our sincere thanks to the Departments of Chemistry, Zoology, and History at Arts, Commerce and Science College Alkuti, for providing the necessary resources and an encouraging academic environment.

Financial support:

Nil

Conflicts of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Reference:

1. Skoog, D. A., Holler, F. J., & Crouch, S. R. (2018). *Principles of Instrumental Analysis* (7th ed.). Cengage Learning;
2. Walker, J. M. (2012). *The Protein Protocols Handbook* (4th ed.). Humana Press;
3. Shah, V. P., Midha, K. K., Findlay, J. W., et al. (2000). Bioanalytical method validation—a revisit with a decade of progress. *Pharmaceutical Research*, 17(12), 1551–1557. <https://doi.org/10.1023/A:1011094920539>;
4. Guo, J., & Diwu, Z. (2018). Advances in affinity chromatography for biomolecules purification. *Journal of Chromatography B*, 1099, 1–14. <https://doi.org/10.1016/j.jchromb.2018.06.014>;
5. Schomburg, G., & Stephan, D. (2018). *Chromatography: Fundamentals and Applications of Chromatography and Related Differential Migration Methods* (6th ed.). Wiley-VCH;
6. Eeltink, S., Schoenmakers, P. J., & Sandra, P. (2012). Miniaturized chromatographic systems for biomolecular analysis. *TrAC Trends in Analytical Chemistry*, 39, 75–87. <https://doi.org/10.1016/j.trac.2012.02.006>;
7. Bushey, M. L., & Collins, J. J. (2017). Application of chromatography-mass spectrometry in proteomics. *Current Protocols in Protein Science*, 89, e61. <https://doi.org/10.1002/cpps.61>;
8. Hage, D. S. (2017). Affinity chromatography: A review of clinical applications. *Clinical Chemistry*, 63(3), 457–468. <https://doi.org/10.1373/clinchem.2016.263019>;
9. Gilar, M., Fountain, K. J., Budman, Y., et al. (2010). Size-exclusion chromatography for the analysis of protein aggregates. *Journal of Chromatography A*, 1217(25), 4327–4341. <https://doi.org/10.1016/j.chroma.2010.04.033>;

10. Swartz, M. E. (2005). *Introduction to High-Performance Liquid Chromatography*. Wiley-Interscience;
11. Groves, K., & Kurosawa, T. (2014). Gas chromatography in lipidomics: Approaches and applications. *Analytical and Bioanalytical Chemistry*, 406(8), 2123–2135. <https://doi.org/10.1007/s00216-014-7657-0>;
12. Kaliszan, R. (2007). Chromatographic techniques in bioanalysis. *Journal of Pharmaceutical and Biomedical Analysis*, 45(4), 709–717. <https://doi.org/10.1016/j.jpba.2007.03.022>;
13. Rathore, A. S., & Winkle, H. (2009). Quality by design for biopharmaceuticals. *Nature Biotechnology*, 27(1), 26–34. <https://doi.org/10.1038/nbt0109-26>;
14. Wilson, R., & Walker, J. (2010). *Principles and Techniques of Biochemistry and Molecular Biology* (7th ed.). Cambridge University Press;
15. Harris, D. C. (2015). *Quantitative Chemical Analysis* (9th ed.). W. H. Freeman and Company