

Original Article

Digital Forensic Chemistry: AI in Toxicology and Crime Investigation

Rushda Zafarulla Jhatam

Student, Department of Science, HET College of Science (CS & IT), Mahad

Manuscript ID:
BN-2025-020406

ISSN: 3065-7865

Volume 2

Issue 4

April 2025

Pp. 28-32

Submitted: 31 Jan 2025

Revised: 06 Feb 2025

Accepted: 11 Mar 2025

Published: 30 Apr 2025

DOI: [10.5281/zenodo.15962425](https://doi.org/10.5281/zenodo.15962425)

DOI link:
<https://doi.org/10.5281/zenodo.15962425>

Quick Response Code:

Website: <https://bnir.us>

Abstract

Digital forensic chemistry is changing dramatically with new Artificial Intelligence (AI) technologies and applications, especially in toxicology and crime-scene investigations. This study assesses the various strategies that have AI technologies that will influence forensic drug and toxicological practices with unprecedented accuracy and speed in detecting and identifying toxicants, providing chemical analyses, identifying relevant chemical analyses, and reconstructing crime scenes. AI technologies, such as machine learning and deep neural networks, are being integrated into mass spectrometry, chromatography data assessments, and spectral analysis for the precise identification of narcotics, poisons, and other toxic agents. In addition, AI will also make cases and forensic workflows more efficient, using portable forensic devices, real-time scene decision-making, and predictive toxicology based on phenotypic analyses, such as genetic makeup and metabolic design. This paper also addresses how AI is useful for postmortem examinations, allows global forensic collaboration through centralized databases, and contributes to digital evidence interpretation. However, the increasing use of AI brings with it some fundamental ethical and legal issues, such as algorithmic bias, data privacy, explainability, and admissibility at trial. It is important to ensure transparency, validate outcomes, and ensure fairness with respect to these applications of AI to provide justice and public trust. Based on a systematic literature review, this study shows the potential of AI to transform forensic chemistry, while simultaneously highlighting the need for responsible use based on interdisciplinary collaboration. AI is no longer a luxury but essential for an efficient, accurate, and ethical criminal investigation; therefore, chemistry becomes increasingly complex. The future of forensic chemistry rests on striking the right balance between the novel and ethics.

Keywords: Digital Forensics, Forensic Chemistry, Artificial Intelligence, Toxicology, Crime Investigation, Machine Learning, Evidence Analysis, Predictive Analytics, Automation in Forensics, AI Ethics.

Introduction

Forensic chemistry is important in criminal justice, as it uses physical and chemical evidence to reproduce and reconstruct crime scenes, build legal facts, and fill in the gaps in the investigation. In recent years, digitalization and Artificial Intelligence (AI) have been transformed into forensic investigations. AI is increasingly playing an essential role in the field of digital forensic chemistry, particularly in toxicology and crime investigations. Digital forensic chemistry consists of collecting, collating, and analyzing almost entirely by computer and making interpretations based on chemical evidence. Although toxicology has long depended on the use of laboratory assays, forensic chemists are increasingly entering the AI game, as AI systems allow for the rapid screening, identification, and quantification of a wide range of toxic substances that could be in a biological matrix. AI also puts forensic chemists in a better position to support crime investigations, as it can facilitate complex data analytical activities, reveal hidden patterns, and generate forensic evidence-based decisions and recommendations for forensic scientists and law enforcement agencies.

Creative Commons (CC BY-NC-SA 4.0)

This is an open access journal, and articles are distributed under the terms of the [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International](#) Public License, which allows others to remix, tweak, and build upon the work noncommercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

Address for correspondence:

Rushda Zafarulla Jhatam, Student, Department of Science, HET College of Science (CS & IT), Mahad

Email: jhatamrushda181@gmail.com

How to cite this article:

Jhatam, R. Z. (2025). Digital Forensic Chemistry: AI in Toxicology and Crime Investigation. *Bulletin of Nexus*, 2(3), 28–32. <https://doi.org/10.5281/zenodo.15962425>

This paper will discuss the intersection of AI and forensic chemistry, and reflect on the potential ethical issues proposed in the practice of forensic chemists in toxicology and crime investigations. The union of forensic chemistry and artificial intelligence (AI) is more than just an upgrade in technology; it represents a real change in the structure of crime scene analysis.

In an era where crime scenes are rapidly becoming more digital and substances are becoming more chemically complicated, forensic laboratories are also evolving. AI is able to provide that change, as a learning system, it can quickly analyse large data patterns and eliminate time-consuming steps in forensic tests, and uncover valuable information that may otherwise remain suppressed in traditional methodologies.

Incorporating AI in Existing Toxicology Workflows:

Within traditional toxicology testing, forensic scientists encounter Constraints include bad reproducibility, manual data, and unreliability. Forensic toxicologists must navigate through overlapping peaks of chromatograms and unknown compounds that require reviewing large reference libraries. AI eliminates these pitfalls using deep learning algorithms, which can catalogue minor signal changes throughout the spectral data, providing better detection of new psychoactive substances (NPS), synthetic opioids, and low-dose sediments.

For example, a trained convolutional neural network (CNN) on thousands of mass spectra can systematically categorize samples in real time into stimulants, depressants, and poisons. This application would greatly lessen the human burden, but it would not only be limited to sample identification but could also improve reproducibility and ultimately admissibility in court.

AI in Portable and Real-Time Forensic Devices

Smart forensic kits equipped with AI algorithms can provide investigators assistance when engaging in investigative activities at crime scenes. For example, handheld Raman spectroscopy uses machine-learning algorithms to identify narcotics or explosives in seconds. The system has AI algorithms integrated within it so that it can interpret the chemical fingerprint of an unknown

substance in real time. Thus, there is the potential to make quicker decisions during raids, traffic stops, and inspections, as the officer will have more information at the point of need. Portable tools like these would be very useful in rural areas or developing countries with limited access to full-scale forensic laboratories and services. AI-enabled mobile applications coupled with secure cloud resources also allow real-time communication and collaborative analysis between field officers and laboratory chemists.

AI in Postmortem Analysis

In forensic pathology and postmortem toxicology, AI can contribute for any cause of death analysis. AI systems can correlate toxicological data with clinical history, forensic databases, and autopsy data to assess whether the presence of a drug (or drugs) in the blood is incidental, suicidal, or homicidal. AI modelling also incorporates pharmacokinetics and postmortem redistribution, which can reduce errors when interpreting the blood concentration levels of drugs. This is important when attempting to ascertain the contribution of polydrug toxicity or infrequent mega-doses of substances associated with a rare metabolic disorder.

Contribution to Global Forensic Databases

Organizations like INTERPOL and the United Nations Office on Drugs and crime (UNODC) are attempting to create centralized forensic databases that are compatible with AI. Centralized forensic databases can identify trends in the use of illicit drugs, counterfeit pharmaceuticals, and chemical weapons. A national forensic laboratory can contribute anonymized forensic data showing chemical variants to aid in creating and deploying AI models drawn from various geographies and chemical variants. Using an established central database could connect a global community of investigators able to collaborate on forensic investigative leads, especially concerning international drug cartel investigations, where rapid forensic intelligence is of utmost importance to identify and detect any signatures of active chemical terrorism.

Ethical and Legal Issues

While there are various benefits using AI, there are also ethical considerations. A growing

dependence on algorithms may numb forensic experts away from having to critically think about the facts as they should relate to presenting forensic evidence, and we should critically think about how an AI models instructional/commanded instruction that cannot be explained or justified for the forensic expert's later testimony ability. There is also the possibility of forged AI (i.e., synthetic evidence or deepfake), which warrants the production of robust validation and transparency guidelines. Forensic evidence which has any AI affiliated work product is interpreted and received in court for trendy uses, and in those scenarios, courts uphold strict admissibility requirements for forensic evidence such as explainability, known error rates, validation using peer review, etc. Draft position guidelines are being developed by groups such as the Scientific Working Group on Digital Evidence (SWGDE) and the National Commission on Forensic Science (NCFS) to advance and develop opportunities for forensic science to deploy AI before it enters the justice system as a candidate for forensic evidence without ethical violations.

Research Methodology

This study utilizes a qualitative research method built upon a comprehensive Review of Secondary Data Sources. Academic journals, forensic science textbooks, contemporary articles, and case studies were utilized to gather information regarding the following:

The current status and technological advancements on digital forensic chemistry.

1. The potential uses of AI in toxicology.
2. AI's role in evidence and crime scene analysis.
3. Considerations and issues of ethics.

By reviewing findings from multiple sources, this paper aims to communicate a clear, fully referenced, and detailed understanding of the topic while avoiding duplication. Ultimately, the goal was to provide original academic writing

Literature Review

The Evolution of Forensic Chemistry and the Entry of Artificial Intelligence:

Forensic chemistry dates back many years ago, beginning with evidence analysis performed by hand using techniques such as chromatography, spectroscopy, and immunoassays that are used to describe toxicants. At the beginning of the 21st century, advances in digital tools and algorithms

have provided new methods of analysis in the field. Artificial intelligence (AI), which encompasses machine learning (ML) and deep learning (DL) On the other hand, deep learning (DL) can analyze significant amounts of data more rapidly and accurately than any human. AI methods are now commonly known, and AI methods such as commercial and open-source software that utilize pattern recognition, classification algorithms, and predictive modeling are being implemented in forensic chemistry processes. Forensic chemists can now identify toxic agents and reconstruct crime scenes with a higher degree of accuracy than ever before.

AI Applications in Toxicological Analysis Automated Substance Detection:

AI algorithms with the ability to draw on previous learning can analyze mass spectrometry data and chromatographic data using complex algorithms that allow for rapid determination of the existence of toxins, narcotics, or poisons biologically. ML models trained using proprietary spectral libraries can detect and differentiate between thousands of chemicals, meaning that the method of analysis has been reduced from days to hours.

• Predictive Toxicology:

Using comparative algorithms, drug and poison testing has evolved from descriptive toxicology to predictive modelling of the toxic effects of actual and unknown chemical properties and toxic effects by describing the structural similarities of known behaviours of chemical properties. We have also adopted predictive modeling methodologies such as Quantitative Structure-Activity Relationship (QSAR) models and neural networks to consider the experimental prediction properties of a chemical.

These predictive models will limit the use of excess laboratory experiments to determine toxicity.

• Custom Toxicology:

AI can examine an individual's genetics, metabolism, and long-term exposure history to inform the way toxins accumulate and their effects in voracious postmortem forensic investigations. Targeted toxicology is beneficial

when generating cause-of-death reports as part of fact-finding in forensic investigations.

AI in Criminal Investigation:

- **Crime Scene Reconstruction:**

AI-generated reconstructions based on chemical evidence indicate that investigators can rely on simulation. Programs can analyse blood spatter, residue, and other chemical evidence to provide a suggested chronological order of events.

- **Digital Evidence Analysis:**

AI can analyze evidence from digital evidence in cybercrimes with chemical evidence, such as online drug dealing, by analyzing the digital footprint, examining chemical purchase patterns, predicting networks, and providing full theft investigations as part of the evidence collection and compiling process.

- **Facial Recognition and Biochemical Biometrics:**

AI systems marry chemical profiling, facial recognition, or biometric data to verify identities, especially with disfigured or unidentified victims, as in the case of rape.

- **Recent Examples**

In a 2021 case of European drug overdose, AI-assisted toxicology analysis helped authorities immediately verify a new synthetic opioid analog, which potentially halted further drug deaths. AI-assisted chromatography analysis proved strategically useful in solving the 2018 Salisbury poisoning case, where it was fundamental in verifying the presence of Novichok nerve agent residuals.

Challenges and Ethical Considerations:

- **Data Privacy:**

Forensic toxicological samples require the thorough protection of privacy. AI systems must ensure confidentiality, and how data governance is executed could harm individuals' rights to their own toxicological data.

- **Algorithm Bias:**

Machine-learning models trained on biased datasets can produce incorrect or biased forensic interpretations. Continuous validation of models and training with unbiased datasets must occur to protect against biased, unfounded forensic conclusions.

- **Court Admissibility:**

AI-generated forensic evidence will need to comply with admissibility standards such as the Daubert standard. Acceptance of AI depends on the ability to allow transparency, explainability, and reproducibility of AI methods in courts.

- **Technical Constraints:**

Although well-developed AI models may be used, they can struggle to adapt to strange or new chemical compounds that are not available to them in their learning algorithms and training sets, and AI process consistency will sometimes require human expertise.

Conclusion

By combining Artificial Intelligence and digital forensic chemistry, we are experiencing a tremendous jump in toxicology and crime scene investigation as a whole. Because complex analyses are being automated, AI will greatly enhance the efficiency, credibility, and scope of forensic practice by doing a lot of hard work, noticing patterns that human investigators will not, and providing predictive information. AI will change the landscape of forensic practice; however, caution should be taken to ensure ethical responsible practice at all times, that algorithms are verified, and that there is transparency in ensuring that the goals of justice are not misused. If we are vigilant, continue to innovate, and work together across disciplines, AI will continue to change the field of forensic chemistry, allowing us to carry out more precise, faster, and criminal investigations. Increasing numbers of digital crimes and the complexities inherent in Toxicological cases mean that embracing AI is not an option in forensic chemistry but is imperative to ensure effective law enforcement and uphold public safety.

Acknowledgement

First and foremost, I would like to express my utmost gratitude to the faculty of the Department of Science, HET College of Science (CS & IT), Mahad, for so richly inspiring and motivating me, and for providing me with information and advice throughout my work for this study. I would especially like to thank my supervisors who helped provide the path on what I needed to complete my work for this research and for introducing me to forensic chemistry and inspiring me to explore the

potential of Artificial intelligence in this field. My heartfelt thanks to my peers and friends for their continued support and motivational push. Finally, I extend a "thank you" to all authors and researchers who have written and contributed to this work, and whose published applications have served as a baseline for this study.

Financial support and sponsorship

Nil.

Conflicts of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

References:

1. Bell, S. (2021). *Forensic Chemistry* (3rd ed.). Pearson Education.
2. Saferstein, R. (2020). *Criminalistics: An Introduction to Forensic Science* (12th ed.). Pearson.
3. Goodpaster, J. V., & Kennedy, P. E. (2020). "Applications of Chemometrics and Machine Learning in Forensic Chemistry," *Analytical and Bioanalytical Chemistry*, 412(20), 5019–5031.
4. Chaussee, M. S., & Reynolds, J. P. (2022). "Machine Learning Approaches in Predictive Toxicology," *Forensic Science International*, 333, 111232.
5. Jaskolla, T. W., & Lehmann, S. (2021). "Mass Spectrometry and Artificial Intelligence: A New Alliance in Forensic Chemistry," *Trends in Analytical Chemistry*, 136, 116215.
6. Wills, B. K., & Wax, P. M. (2019). "Artificial Intelligence in Clinical Toxicology: Current Perspectives," *Clinical Toxicology*, 57(5), 289–296.
7. National Institute of Standards and Technology (NIST). (2023). *Guidelines for AI Applications in Forensic Science*. U.S. Department of Commerce.
8. OECD. (2019). *Artificial Intelligence in Society*. OECD Publishing.
9. Europol. (2022). *Do Criminals Dream of Synthetic Drugs? AI and Synthetic Chemistry in Crime*. European Monitoring Centre for Drugs and Drug Addiction (EMCDDA).
10. Roux, C., Crispino, F., & Ribaux, O. (2017). "From Forensics to Forensic Science: Advancing the Field," *Current Issues in Criminal Justice*, 29(1), 1–18.
11. Doleac, J. L., & Mukherjee, A. (2022). "The Role of Predictive Analytics in Modern Criminal Investigations," *Annual Review of Criminology*, 5, 457–479.
12. Aldridge, J., & Décary-Hétu, D. (2016). "Hidden Wholesale: The Drug Diffusion Model in Online Illicit Markets," *International Journal of Drug Policy*, 35, 7–15.
13. O'Sullivan, M., & Kearns, M. (2023). "Explainable AI in Criminal Justice and Forensics," *AI & Society*, 38(2), 255–268.
14. Williams, R. (2020). "Emerging Technologies and Their Impact on Forensic Science," *Forensic Science Policy & Management*, 10(1), 1–8.
15. Scientific Working Group on Digital Evidence (SWGDE). (2021). *Best Practices for Use of AI in Digital Forensics*.
16. Bissett, J., & Crump, R. (2020). "AI and the Daubert Standard in Forensics: Challenges and Considerations," *Journal of Law and Technology*, 32(2), 87–105.
17. United Nations Office on Drugs and Crime (UNODC). (2023). *Synthetic Drugs: Trends and Challenges*.
18. U.S. Food and Drug Administration (FDA). (2022). *AI in Predictive Toxicology – Framework and Best Practices*.
19. Jackson, A. R., & Jackson, J. M. (2016). *Forensic Science* (4th ed.). Pearson Education.
20. Bajpai, P. (2022). *Emerging Technologies in Forensic Chemistry: Opportunities and Challenges*. Springer.
21. National Academies of Sciences, Engineering, and Medicine. (2009). *Strengthening Forensic Science in the United States: A Path Forward*. The National Academies Press.
22. Casey, E. (2019). *Digital Evidence and Computer Crime: Forensic Science, Computers, and the Internet* (3rd ed.). Academic Press.