

Original Article

Climate Action in Himachal Pradesh: A Roadmap to SDG-13 through Localized Policies and Community Engagement

Aman Sharma

Research Scholar, Department of Public Administration,
Rajiv Gandhi National Institute of Youth Development, Regional Centre, Sector-12, Chandigarh

Manuscript ID:
BN-2025-0202010

ISSN: 3065-7865

Volume 2

Issue 2

February 2025

Pp. 51-60

Submitted: 27 Dec 2024

Revised: 15 Jan 2025

Accepted: 18 Feb 2025

Published: 28 Feb 2025

DOI:
[10.5281/zenodo.15332734](https://doi.org/10.5281/zenodo.15332734)

DOI Link:
<https://doi.org/10.5281/zenodo.15332734>

Quick Response Code:

Website: <https://bnir.us>

Abstract

Himachal Pradesh, situated in the ecologically sensitive Indian Himalayan Region, faces growing climate related challenges, including glacial retreat, unpredictable weather patterns, biodiversity loss and a rising frequency of extreme climatic events. This study critically examines the extent to which the state's climate strategies align with Sustainable Development Goal 13 (SDG 13) on Climate Action, with particular emphasis on localised policy approaches, community participation and decentralised governance mechanisms. Key environmental concerns such as the instability of hydropower resources, vulnerability of traditional farming systems and recurrent landslides are analysed in relation to broader climatic risks.

The research evaluates the effectiveness of the Himachal Pradesh State Action Plan on Climate Change (SAPCC) alongside initiatives related to afforestation, renewable energy development and disaster preparedness. A mixed methods approach is employed, combining primary data from interviews and field studies involving farmers, community leaders and government officials with secondary analysis of policy documents, meteorological data and environmental literature. Special focus is placed on the role of Panchayati Raj Institutions, civil society organisations and indigenous knowledge in fostering local climate resilience.

The study identifies critical implementation gaps, including fragmented institutional coordination, inadequate financial resources, limited community awareness and insufficient technological infrastructure. Recommendations are proposed to enhance interdepartmental collaboration, integrate artificial intelligence and geographic information systems for climate risk monitoring, promote grassroots adaptation measures and strengthen climate education. Drawing comparative insights from Sikkim, Bhutan and Nepal, the paper positions Himachal Pradesh as a potential model for mountain based climate governance through inclusive, evidence informed and community centred frameworks that advance long term resilience.

Keywords: Climate Resilience, Extreme Weather, Renewable Energy, Community-Led Governance, Sustainable Climate Policies.

Introduction

Climate change poses serious risks to Himachal Pradesh because of its specific geographical characteristics and environmental elements and economic conditions. The IHR has encountered rapid glacial melting as well as erratic weather along with biodiversity decline and more occurrences of extreme climate events (Kumar et al., 2023). Environmental changes present major risks to local livelihoods which affect people who depend on agriculture and forestry together with hydropower operations (Chakravarty & Ghosh, 2024). Visible evidence of climate change effects is presently active across various parts of the world. The main apple agricultural sector which drives the economy shows deteriorating performance because warmer temperatures cause farmers to move apple cultivation upward in elevation (Pathak & Deshkar 2023).

Creative Commons (CC BY-NC-SA 4.0)

This is an open access journal, and articles are distributed under the terms of the [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International](#) Public License, which allows others to remix, tweak, and build upon the work noncommercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

Address for correspondence:

Aman Sharma, Research Scholar, Department of Public Administration, Rajiv Gandhi National Institute of Youth Development, Regional Centre, Sector-12, Chandigarh, Email: aman81sharma41@gmail.com

How to cite this article:

Sharma, A. (2025). Climate Action in Himachal Pradesh: A Roadmap to SDG-13 through Localized Policies and Community Engagement. *Bulletin of Nexus*, 2(2), 51–60. <https://doi.org/10.5281/zenodo.15332734>

The primary revenue stream generated by hydropower operations in the state faces instability thanks to glacial melting and uneven river flow patterns according to Kumar et al. (2024). Unstable monsoon rainfall and growing landslides pose threats to infrastructure and settlement areas (Shah & Malakar, 2024). The Himachal Pradesh State Action Plan on Climate Change (SAPCC) operates as a climate change strategy which supports SDG 13 through adaptation and mitigation solutions. The policies in place show no significant improvement in processes related to climate governance and community involvement nor do they include digital approaches for climate resilience (Appadurai et al., 2019). The research evaluates the policies' performance through analysis of localized methods that enhance sustainable climate efforts. The study assesses SDG 13 alignment of climate strategies and analyzes community-driven disaster response methods with sustainable farming approaches together with biodiversity protection measures. Through this research the authors demonstrate that both institutional and policy mechanisms in climate governance show weaknesses while highlighting the significance of panchayats and civil society organizations as decentralized bodies who execute climate projects. The research documents two technological solutions which combine GIS mapping with climate-smart agriculture methods for improving resilience.

Methodology

The research design combines qualitative and quantitative research methodologies through a mixed-methods approach to understand climate action in Himachal Pradesh. The researcher gathers data through evaluations of the Himachal Pradesh SAPCC together with MoEFCC publications along with NITI Aayog's Sustainable Development Reports and official government reports. Research about climate adaptation and SDG localization and environmental policies in the Indian Himalayan Region is assessed through academic literature.

Analysis of quantitative data relies on data obtained from Indian Meteorological Department (IMD) alongside Intergovernmental Panel on Climate Change (IPCC) data that examines temperature patterns and glacial regression and precipitation patterns. Firsthand knowledge of local adaptive measures emerges from case studies

together with field research which is possible to conduct. The examination of actual climate stress and resilience adoption involves direct questionnaires with state representatives as well as farmers and hydropower companies and community leaders. The research utilizes the Climate Resilience Framework (CRF) for measuring local community adaptive capabilities as well as institutional readiness. The research examines mountainous regions cross-regionally for useful methods that can benefit Himachal Pradesh.

Climate Vulnerability in Himachal Pradesh

The territory of Himachal Pradesh exposed to considerable climate threats because it contains a vulnerable natural environment together with elevated slopes and depends substantially on agricultural activities and forestry and hydroelectric power generation. Glacial recession together with unpredictable weather cycles and enhanced extreme weather conditions and biodiversity loss are effects of climate change (Negi et al., 2018). These problems disturb familiar agricultural methods and create more displaced residents who are progressively more struggling socially and financially. Developing successful adaptation and mitigation plans requires complete knowledge of such environmental risks.

Geographic and Ecological Challenges

The glaciers in Himachal Pradesh that support the Chenab, Sutlej and Beas river basins are actively retreating because of growing temperatures (Dimri et al., 2021). Each year the Chhota Shigri Glacier moves backward 13-20 meters due to retreat but this process leads to lower water availability and stronger Glacial Lake Outburst Floods (Prakash et al., 2024; Negi et al., 2022). Better disaster preparedness systems are essential for the Kullu and Lahaul-Spiti region because flash floods become more frequent. Climate change instability of monsoon patterns makes it possible for severe weather events including cloudbursts and floods along with landslides to occur (Gupta et al., 2024). An unstable monsoon climate brings about extended rainy seasons that create floods which transition into stretched drought seasons that raise the possibility of drought occurrences. Soil slides in the districts of Kinnaur, Chamba and Kangra became more common due to forest destruction combined with uncontrolled road construction and

changing rainfall patterns (Chandra et al., 2024). The region showed its dangerous exposure to climate-related disasters when a catastrophic 2013 cloudburst event struck Kinnaur. Habitat loss threatens both the Himalayan Musk Deer and Western Tragopan together with exotic invasive plant species including Lantana camara and Parthenium hysterophorus that lead to ecological harm and farm production losses (Singh et al., 2024). Forest and crop health suffers further damage due to the decrease in polluted pollinators including butterflies and bees.

Socio-Economic Challenges

The economic sector of Himachal Pradesh relies mainly on agricultural and horticultural products so it remains severely vulnerable to climate changes. Temperature elevation alongside irregular rainfall patterns and diminishing snow coverage causes apple and wheat along with maize production to yield fewer crops (Shrestha & Aryal, 2011). The traditional apple cultivation region between 1,500 and 2,500 meters is moving up in altitude thus increasing farming expenses while it reduces suitable agricultural land (Kumar et al., 2024). The reduction of wheat and barley production reached 15-20% within the past twenty years primarily because of limited water supplies and unpredictable monsoon patterns (Negi et al., 2022). Rural communities reliant on agriculture, forestry and pastoralism are facing growing hardships. Water scarcity, soil degradation and crop failures are forcing many to seek alternative livelihoods (Ray et al., 2011). Migration trends indicate that people from Lahaul-Spiti and Kinnaur are moving to lower-altitude areas and urban centers in search of stable income (Dimri et al., 2021). Seasonal variations in the Beas, Sutlej and Ravi rivers have led to reduced hydropower output, especially during dry months (Sharma et al., 2022). Over 60% of natural springs in the state have reported declining discharge, exacerbating water shortages for rural households, marginalized communities and women (Chandra et al., 2024).

Climate Policy Framework in Himachal Pradesh

The state of Himachal Pradesh has adopted active climate policies which work toward achieving the Climate Action goal outlined in Sustainable Development Goal (SDG) 13. Himachal Pradesh State Action Plan on Climate Change

(SAPCC) represents the main policy instrument by offering sector-based strategies to handle climate-related vulnerabilities in forestry alongside water resources and agriculture and energy and disaster management systems (Jha, 2011). The SAPCC evolved from NAPCC to become an organizational framework which supports disaster preparedness initiatives and renewable energy creation and institutional strengthening activities (Dubash & Jogesh, 2014). The SAPCC implementation process encounters several obstacles despite its project goals being diverse. Research shows that climate-related expenditures from the SAPCC budget reach only 60% of the total funding because of limited resources and poor communication between government agencies and panchayats (Bajaj 2022). Thorough digital monitoring systems that integrate would help both climate risk assessment as well as resource management optimization. To achieve success with SAPCC in climate mitigation programs it is critical to boost policy performance and establish sufficient funding and implement stronger local governance systems.

Himachal Pradesh State Action Plan on Climate Change (SAPCC)

As a comprehensive policy document SAPCC establishes strategic approaches which fight climate change across multiple sectors in India. The policy document includes components for disaster risk reduction whereas it also promotes biodiversity conservation and water resource management and sustainable agriculture development and renewable energy expansion. State policies adopted SAPCC as an integration strategy to promote sustainable environmental governance according to Jha (2011). Various obstacles stand in the way of implementing the program. The main obstacle stems from insufficient funding because bureaucratic inefficiencies cause many allocated funds to fail reaching the implementation phase (Dubash & Jogesh, 2014). National climate policies remain out of reach for local authorities because they lack district-level adaptation frameworks. The current gaps need solutions through enhanced financial management and stronger local governance with government-agency-academic institution-civil society organization collaboration.

Afforestation and Biodiversity Conservation

Himachal Pradesh has launched extensive afforestation initiatives to combat deforestation, enhance carbon sequestration and promote biodiversity conservation. The state actively participates in national programs such as the Green India Mission (GIM) and the Compensatory Afforestation Management and Planning Authority (CAMPA), both of which emphasize forest restoration, land rehabilitation and ecosystem resilience (Thakur & Chand, 2024). ...energy solutions. The Van Panchayat Initiative serves as a community-based initiative which helps increase forest areas. The Government Initiative for Motivational Growth (GIM) takes advantage of strategic native species planting in sensitive areas for erosion control and biodiversity promotion (Pillai & Dubash, 2021). The protection of medicinal plants *Picrorhiza kurroa* and *Swertia chirata* against habitat destruction happens through implemented conservation policies (Rani, 2023). Tree plantation success rates often fall below 70-75% because of lacking follow-up care and insufficient water resources and poor community involvement (Dubash & Jogesh, 2014). *Lantana camara* functions as an invasive species that harms forest ecosystems according to research by Senapati et al (2023). Afforestation programs will achieve better long-term outcomes when scientific tracking improves while community involvement strengthens and effective post-plantation care systems get implemented.

Renewable Energy and Hydropower Development

Renewable energy operations in India strongly rely on Himachal Pradesh as this region generates over 27% of the national hydropower capacity (Datta & Behera, 2024). The state and the national power grid receive electricity from major facilities like Karcham Wangtoo and Nathpa Jhakri (Dubash & Jogesh, 2014). The state government supports renewable energy expansion through bilateral efforts with HIMURJA that enables rooftop solar implementation together with micro-hydropower installation in distant regions (Senapati et al., 2023). The use of hydropower provides environmentally friendly fuel replacement but major dam development projects produce substantial ecological impact. The modifications in riverflow patterns together with greater amounts of

sediment and disrupted habitats have caused damage to biodiversity elements and irrigation infrastructure (Bajaj, 2022). Water availability together with aquatic ecosystems in the Sutlej and Beas River basins experienced significant hydrological changes according to research by Datta and Behera (2024). The production of electricity faces seasonal variations because glacial retraction from climate change combines with unpredictable monsoon patterns (Rani, 2023). For maintaining a sustainable energy transition the state must focus on developing micro-hydropower systems alongside building solar mini-grids which serve as decentralized renewable energy methods.

Community Involvement and Local Governance in Climate Action

Community involvement remains crucial for achieving climate action in Himachal Pradesh because climate change directly affects local residents' ways of making a living. Local involvement stands vital for climate adaptation and mitigation strategies because the state contains different geographic zones under decentralized governmental structures and depends on natural resources. The analysis shows community involvement leads to improved climate resilience because it strengthens disaster safety measures and delivers sustained agriculture systems and renewable power expansion (Kharwar et al., 2024). The implementation of climate policy between directives and ground-level requirements is supported effectively by Panchayati Raj Institutions (PRIs) together with non-governmental organizations (NGOs) and traditional local knowledge systems.

Role of Panchayati Raj Institutions (PRIs) in Climate Adaptation

Local self-governance institutions known as Panchayati Raj Institutions (PRIs) function across rural Himachal Pradesh by assisting communities in addressing climate change situations and disaster management and sustainable resource use adoption. Villages utilize PRIs to carry out local plans for adaptation while distributing disaster recovery budget and promoting sustainable agricultural practices. The districts of Kullu and Kangra together with Chamba have established climate-sensitive land-use plans through PRIs which unite sustainability goals with farming

systems and water policy and forest conservation practices (Singh, 2024). Authorities from Kangra district confirmed that PRIs created effective frameworks to teach people about climate issues as well as create protocols for emergency responses. The research indicated that involved local government entities improved warning system dissemination and made climate-resistant seeds available while educating citizens about emergency preparation (Singh 2024). PRIs remain at risk because institutional and financial complications including limited technical assistance and budgetary restrictions as well as administrative coordination problems with state government agencies affect their fundamental operations since their creation. The ability of PRIs to efficiently manage climate governance depends on their capability development and financial decentralized support with better access to climate data.

Role of NGOs and Civil Society in Climate Governance

Non-governmental organizations (NGOs) together with civil society groups function as essential stakeholders for climate governance in Himachal Pradesh. Community participation increases through these organizations together with their delivery of climate adaptation strategies for sustainable development initiatives. Through efforts of HIMURJA and the G.B. Pant Institute of Himalayan Environment and Development the communities gain access to renewable energy sources as well as become more prepared for disasters and through tree planting programs (Islam et al., 2024). Sustainable energy solutions together with climate-friendly agricultural methods and forest regeneration in sensitive climate areas become possible through researcher and policy maker and local population partnerships that organizations create with their respective regions. Dhauladhar Cleaners serves as a "Dhauladhar Cleaners" represents a renowned community-based climate initiative that resulted from local civil society organization initiatives in Dharamshala. This initiative shows how participatory governance lets communities solve climate problems by implementing waste management policies and forestation programs and educational climate programs (Kharwar et al., 2024). The sustainable development and water management projects for

marginalized populations receive vital support from NGOs through their work of enabling local and particularly female participation. The work of NGOs encounters challenges because of insufficient support through grants and bureaucratic red tape as well as lacking official policies. Partnerships formed between NGOs and both PRIs and government agencies will create better opportunities to scale up climate adaptation initiatives across the state effectively.

Indigenous Knowledge and Climate-Resilient Practices

The local traditional practices of Himachal Pradesh have functioned traditionally to build sustainable climate adaptation methods since ancient times. Traditional preservation approaches for water resources, farming techniques and preparedness systems keep delivering effective results to safeguard climate stability. For several generations the Kuhl irrigation system maintained by Spiti and Kinnaur communities has demonstrated its effectiveness in managing water for agricultural purposes (Islam et al., 2024). Herbal traditional medicine alongside ecological farming methods lead the way in biodiversity protection along with sustainable agricultural practices. Traditional seed banks returning to villages enable farmers to grow drought-resistant crop varieties so they no longer need outside agricultural materials (Sharma, 2024). The decrease of traditional climate adaptation practices results from three key factors that include socio-economic changes combined with industrialized agriculture. The maintenance of traditional climate adaptation practices depends on local communities' efforts to protect indigenous knowledge which scientists can validate jointly with proper government backing to integrate it into overall climate adaptation programs..

Gaps and Challenges in Climate Action Implementation

Despite notable policy advancements, Himachal Pradesh encounters several institutional, financial, technological and social barriers in implementing climate action. The State Action Plan on Climate Change (SAPCC) lays a foundation for addressing climate-related vulnerabilities, but fragmented governance structures, funding limitations, insufficient community participation

and a lack of technological integration hinder effective execution (Bhardwaj, 2024).

Institutional and Governance Challenges

In Himachal Pradesh the ineffective implementation of climate policies occurs because multiple government departments fail to communicate together effectively (Kharwar et al., 2024). The independent operations between State Disaster Management Authority (SDMA) and HIMURJA produce duplicate work teams that slow down execution processes. The financial limitations of policy funding result in poor resource allocation that causes delay of projects and limits outreach while using less than 60% of budgeted funds (Bhardwaj, 2024). The SAPCC encounters enforcement problems that reduce the ability to identify responsible parties for policy results (Pawar, 2024). The grassroots climate adaptation responsibilities of Panchayati Raj Institutions (PRIs) remain limited because they lack proper financial backing and technical resources according to Singh et al., 2025. The insufficient application of climate adaptation strategies exists because Lahaul-Spiti and Kinnaur regions face both logistical hurdles and financial barriers. Obtaining effective governance systems and enhancing cooperation among departments with well-timed financial backing are fundamental elements for better implementation of climate policy initiatives.

Technological and Data Constraints

Himachal Pradesh faces major challenges to climate resilience because it does not have effective real-time climate monitoring systems based on strong technological infrastructure. The lack of sufficient tracking technology limits our ability to monitor glacial progress, forest health and severe climate changes which diminishes the success of prevention measures (Pawar, 2024). ROI limitations and insufficient skilled workforce hinder the GIS and artificial intelligence-based climate risk assessment adoption throughout the region (Bhardwaj, 2024). A centralized climate data repository is needed to establish effective early warning systems because present limitations decrease disaster response success according to Kharwar et al. (2024). A need exists to improve climate-smart agricultural practice implementation methods. Precision farming techniques fail to spread across Indian agriculture because farmers

lack digital tools and have insufficient training to implement these methods (Singh et al., 2025). Expanding digital infrastructure, enhancing AI-driven climate forecasting capabilities and providing technical training for farmers and policymakers can significantly improve climate adaptation outcomes.

Community Awareness and Participation Issues

The effective implementation of climate action faces major obstacles because rural as well as tribal communities show limited awareness and engagement. The inhabitants of Kullu and Chamba districts in high elevations need better information about climate risks along with suitable adaptation methods (Bhardwaj, 2024). The absence of climate information blocks residents from taking part in sustainable behavior initiatives (Singh et al., 2025). Sustainable farmers from women and marginalized communities play essential roles but typically experience exclusion when water management decisions and agricultural planning processes take place. Public involvement in emergency planning remains limited when we consider the 30% awareness rate of the Kangra district local population about the State Disaster Management Plan (Kharwar et al., 2024). Expected increases in climate policy participation require implementation of local traditions and the 'Kuhl' irrigation method and agroforestry approaches along with community-based initiatives according to Pawar (2024). The successful integration of climate awareness campaigns at grassroots levels together with strong support from local policies will increase community participation in climate adaptation programs.

Recommendations for Strengthening Climate Action

Although there has been progress in climate action throughout Himachal Pradesh the state continues to encounter impediments related to policy execution alongside governance issues and technological barriers as well as community involvement constraints. To achieve effective climate resilience development requires a comprehensive strategy which unifies policy integration with technological adoption and sustainable energy measures along with community participation.

Enhancing Policy Integration for Climate Governance

Different competing policy strategies prove ineffective when managing climate projects. Local climate action succeeds better through applying SAPCC framework-specific adaptation plans to different districts (Azhoni et al., 2024). Rich state budget allocations combined with appropriate specialized help to both PRIs and urban municipalities will establish successful pathways that enable policies to achieve intended implementation goals. The construction of climate-resilient infrastructure benefits most from enhanced public agency cooperation together with joint initiatives between the private sector and NGOs (Singh et al., 2025). A Climate Resilience Task Force serves two purposes to enhance both coordination functions and climate policy evaluation and monitoring activities.

Leveraging Technology for Climate Resilience

Digital technology tools have become essential instruments which help communities better adapt to climate changes and prepare for disasters. The combination of AI with GIS and remote sensing allows for better climate risk evaluations and glacial observation and produces more efficient warning systems for severe weather incidents (Azhoni et al., 2024). A centralized database of climate data will boost the effectiveness of decisions made by stakeholders. The implementation of portable warning systems through mobile devices enables enhanced community readiness toward landslides and floods and drought situations (Pawar 2024) while artificial intelligence assists agriculturists in developing sustainable strategies against climate variations. Solar-powered environmental sensors deployed in agricultural land improve the optimization of water and crop management approaches.

Sustainable Energy Roadmap for Low-Carbon Development

The hydropower sector of Himachal Pradesh stands as a vital factor in India's renewable energy composition yet large scale dam constructions create environmental obstacles (Singh et al., 2025). Energy security measures should focus on distributing renewable power generation through micro-hydropower and rooftop solar plus wind projects to attain environmental benefits.

Rural electrification becomes possible through mini-grid solar projects which receive financial help through subsidies and low-interest loans according to Azhoni et al. (2024). Successful long-term sustainability requires the enhancement of environmental impact assessments and investments in smart energy grids alongside expanded energy storage solutions.

Capacity Building and Community Awareness

Rural communities show limited awareness regarding effective climate action because they struggle with participation in such initiatives (Azhoni et al., 2024). Running training courses about disaster readiness together with climate-smart farming techniques and water resource preservation methods improves greatly the adaptive capacity of communities. School teaching of climate education will help students learn from their childhood years (Singh et al., 2025). Public engagement will become stronger through digital platform-based mass awareness initiatives together with community outreach programs. Grassroots climate resilience grows stronger when stakeholders support self-help groups operated by women who work in forest conservation and water preservation activities (Pawar, 2024).

Himachal Pradesh as a Model for Climate Action

Through its detailed climate strategies Himachal Pradesh demonstrates the highest standards of climate resilience for mountainous areas. The state's combined strategy which connects renewable energy projects to establishment of forests and community-based adaptation activities guides similar regions in their environmental response. Studies of effective climate adaptation plans implemented in Sikkim as well as Bhutan and Nepal can help Himachal Pradesh improve their strategies through which they will lead sustainable development (Gurung et al., 2018).

Comparative Insights from Similar Mountainous Regions

Several mountainous regions have successfully implemented climate adaptation strategies that offer valuable lessons for Himachal Pradesh:

Sikkim's Organic Farming Model: Sustainable Agricultural Transformation

The international community accepts Sikkim as India's first organic state because it shows that organic agriculture preserves biodiversity while creating climate resilience according to Chhetri et al. (2022). The ban on chemical fertilizers and pesticides throughout the state led to improved sustainable farming methods and better water conservation and reduced soil erosion. Sikkim's model offers potential for implementation in Himachal Pradesh through expanded financial assistance for organic certification together with the development of market linkages and investments in bio-fertilizers as per research by Dhungana et al. (2024).

Bhutan's Hydropower Approach: Low-Impact Renewable Energy Development

Bhutan maintains a carbon-negative status through its development of high clean energy potentials from hydropower which protects environmental integrity (Wangdi, 2016). The country implements run-of-the-river hydropower facilities to reduce environmental effects against conventional large dam projects thereby making them suitable for Himachal Pradesh (Malla & Arya, 2024). Large dams located in Himachal Pradesh generated adverse effects on river ecosystems while creating disruptions for sediment flow and causing biodiversity to diminish. By implementing Bhutan's hydropower practices of low-impact modeling, systematic environmental impact reviews and active community participation the state can balance its energy development with environmental protection.

Nepal's Community Forestry Model: Decentralized Forest Management

The community forestry programs of Nepal give local groups control of forest protection which leads to both environmental benefits and economic opportunities for sustainable lifestyles (Suberi et al., 2018). The Community Forestry Initiative of Nepal enables 40% of national forest territory to be governed by community user groups who lead participatory forest regeneration operations (Devkota 2013). The decentralized forest governance system of Nepal which involves SHGs and panchayats leading forest conservation efforts should be adopted by Himachal Pradesh to achieve

better forest conservation results due to existing forest degradation issues. The Green India Mission (GIM) along with the Compensatory Afforestation Fund (CAMPA) offer programs to expand community-driven operations which restore damaged environments while providing financial benefits to local inhabitants.

Scaling Best Practices for Global Climate Resilience

Himachal Pradesh's climate strategy demonstrates an adaptable solution which states across India as well as international mountain regions could use as a template. The state should combine the best Sikkim, Bhutan and Nepal practices with enhanced existing policies to increase its climate sustainability and resilience.

Advancing Climate-Smart Agriculture and Organic Farming

The state of Himachal Pradesh needs to increase its adoption of climate-smart agriculture methods to combat agricultural effects from climate change. Organic farming in Sikkim shows that sustainable financial approaches are essential to enhance sustainable agricultural systems. Rooting trees with agricultural crops through traditional agroforestry practices generates better terrain conditions and builds higher carbon stores. By implementing precision farming technology and planting drought-resistant crops farmers can boost their water usage efficiency and create stronger resistance against external threats to their farms. The established measures foster sustainable food production techniques which simultaneously cut back greenhouse gas production.

Sustainable Hydropower Expansion with Ecological Safeguards

The approach Bhutan uses for constructing power projects without harming nature becomes a model for Himachal Pradesh to establish environmentally conscious ways to produce electricity. Small run-of-the-river and medium-size hydropower projects represent the best choice for Himachal Pradesh to achieve both energy safety and environmental protection. Greater improvement of EIAs needs to occur simultaneously with the establishment of revenue-sharing programs to provide benefits to local communities during hydropower developments.

Community-Led Forest Conservation and Governance

The outcome of community forestry in Nepal highlights about the advantages of distributing forest management tasks to local communities. Local self-help groups combined with panchayats in Himachal Pradesh should receive empowerment through leadership positions to optimize forest conservation results. Community-driven afforestation projects will receive increased funding through digital monitoring tools based on satellite imaging and GIS mapping to track forest cover changes and carbon sequestration achievements better.

Scaling Digital Climate Adaptation Tools and Early Warning Systems

The integration of digital solutions into climate governance is crucial for strengthening climate adaptation efforts. Investing in AI-powered climate forecasting models can enhance the prediction of extreme weather events, reducing disaster risks. Mobile-based early warning systems for landslides, floods and droughts can improve preparedness and emergency response at the local level. Establishing an open-access climate data platform will facilitate collaboration among researchers, policymakers and community stakeholders, ensuring data-driven decision-making for climate resilience.

Conclusion

The state of Himachal Pradesh has progressed in making its climate policies consistent with Sustainable Development Goal (SDG) 13 by emphasizing adaptive measures and renewable energy development and forest regeneration programs coordinated by community members. Several barriers persist in the implementation of policies together with institutional coordination efforts and the pursuit of financial backing and public cooperation. The SAPCC provides an organized system for goal attainment though technological constraints as well as implementation barriers hinder total operational effectiveness. Permanent issues require joint effort between government authorities and both civil society organizations and local community networks to resolve them. Each organization unit should actively contribute to building climate resilience capabilities. Panchayati Raj Institutions (PRIs) as

well as community organizations face institution-related barriers along with financial limitations when managing disasters and resources. Upon receiving technical training and acquiring financial independence with climate risk education their climate action effectiveness will improve. Decision-making processes that include all women and tribal communities as well as marginalized groups will generate adaptation strategies which deliver equal advantages to everyone.

The observation of climate risks and disaster preparedness requires active improvement of technological systems. AI predictive models combined with GIS platforms and satellite tracking systems produce predictive technologies which create more effective adaptive reactions with timely warning mechanisms. The continued achievement of climate resilience programs relies on obtaining better access to climate finance. Project implementation faces continual barriers because of slow fundraising processes alongside insufficient funding availability. Investigating several international climate finance alternatives such as green bonds, carbon credits and adaptation funds will make additional funding accessible. A Climate Resilience Fund will become operational through investments from multiple funding sources which include government grants and CSR contributions and public-private partnerships. These measures will help Himachal Pradesh establish itself as one of the world's leading authorities in managing mountainous climate issues. The goal of climate resilience for the long term depends on effective institutional frameworks that collaborate with technological advancement while community-based programs and sustainable funding tools help achieve sustainable results. A sustainable future for the state and global model for climate change challenges will result from traditional knowledge united with modern innovations through collaborative governance and extensive climate-smart initiatives across the state.

Acknowledgment

I am Mr. Aman Sharma thankful to my supervisor Dr. T. Gopinath, Department of Public Administration, Rajiv Gandhi National Institute of Youth Development, Regional Centre, Chandigarh for granting permission to carry out the work. I sincerely appreciate his valuable guidance, constant

encouragement and constructive feedback which significantly enhanced the quality of this research.

Financial support and sponsorship

Nil.

Conflicts of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper

References:

1. Appadurai, A. N., Mishra, A., & Choudhury, D. (2019). *Adaptation to climate change in the Hindu Kush Himalaya: Stronger action urgently needed*. Springer.
2. Azhoni, A., Holman, I., & Jude, S. (2024). *Climate change adaptation attributes across scales and inter-institutional networks: Insights from national and state-level water management institutions in India*. Springer.
3. Bhardwaj, N. (2024). *Enhancing resilience in Himalayan settlements*. 14.139.241.254.
4. Chakravarty, T., & Ghosh, P. (2024). *SDG 13 and climate change in India*. Springer.
5. Chandra, A., Dimri, A. P., Negi, V. S., et al. (2024). *Climate change and biodiversity in the Himalayas*. Taylor & Francis.
6. Datta, P., & Behera, B. (2024). *India's approach to agroforestry and climate resilience*. Elsevier.
7. Devkota, D. C. (2013). *Regional cooperation: Key to climate change adaptation in HKH region*. Academia.
8. Dhungana, N., & Lee, C. H. (2024). *Mountain communities' preferences for adaptation strategies in watershed management*. Research Square.
9. Dimri, A. P., Negi, V. S., Chandra, A., et al. (2021). *Climate change, cryosphere, and impacts in the Indian Himalayan region*. JSTOR.
10. Dubash, N. K., & Jogesh, A. (2014). *Mainstreaming climate change in state development planning: An analysis of SAPCCs*. CPR.
11. Gurung, D. B., Suberi, B., & Bajracharya, R. M. (2018). *People's perception of climate change impacts and their adaptation practices in Khotokha Valley, Bhutan*. NMBU.
12. Islam, K. M. B., Mitra, A., & Khan, A. (2024). *Toward sustainable climate governance: A case study of risk assessment and management in Kullu, Himachal Pradesh*. Journal of IIM Shillong.
13. Jha, A. K. (2011). *Much ado about state action plans on climate change*. PAIRVI.
14. Kharola, M. (2024). *Litigating climate change: Himalayan glaciers at the forefront*. JSS Law College.
15. Kharwar, K., Katoch, A., & Sharma, T. (2024). *Participatory communication for environmental conservation: A case study of 'Dhauladhar Cleaners' in Himachal Pradesh*. ResearchGate.
16. Kumar, A., De Jong, W., Kumar, M., & Pandey, R. (2024). *Climate-resilient pathways and nature-based solutions in the Indian Himalayan Region*. ResearchGate.
17. NITI Aayog. (2018). *Contributing to sustainable development in the Indian Himalayan region*. NITI Aayog, Government of India.
18. Negi, V. S., Chandra, A., Dimri, A. P., et al. (2022). *Climate change impacts in Western Himalayas: A review*. Springer.
19. Pandey, V. K., et al. (2024). *Climate change and human adaptation policies*. Springer.
20. Pathak, H. (2023). *Impact, adaptation, and mitigation of climate change in Indian agriculture*. Springer.
21. Pawar, P. (2024). *Analysing impending groundwater crisis in Delhi: Causes and recommendations*. Journal of Water and Environmental Sustainability.
22. Rani, S. (2023). *Initiatives on climate change mitigation in the Beas Basin*. Springer.
23. Roy, S., Kaushik, P. R., & Sangwan, P. (2024). *Effectiveness of NGOs in mountainous solid waste management: A case study from Healing Himalayas in Rakchham, Himachal Pradesh, India*. Waste Management & Research.
24. Senapati, T., & Ghosh, A. R. (2023). *Impacts of low carbon economy in India*. Springer.
25. Shah, A., & Malakar, K. (2024). *Climate-change-induced risk mapping of the Indian Himalayan districts using the latest IPCC framework*. Elsevier.
26. Singh, A., & Sharma, R. (2025). *Developing integrated waste management systems for eco-friendly tourism in rural areas of Himachal Pradesh*. IGI Global.
27. Wangdi, N. (2016). *Drought stress tolerance and climate change adaptation potentials of main forest types in Bhutan*. Research Gate.